已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Objective Self-Adaptive Particle Swarm Optimization for Large-Scale Feature Selection in Classification

粒子群优化 维数之咒 选择(遗传算法) 计算机科学 结构 特征(语言学) 局部最优 人工智能 进化算法 遗传算法 最优化问题 数学优化 算法 机器学习 数学 程序设计语言 语言学 哲学
作者
Chenyi Zhang,Yu Xue,Ferrante Neri,Xu Cai,Adam Słowik
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:34 (03) 被引量:5
标识
DOI:10.1142/s012906572450014x
摘要

Feature selection (FS) is recognized for its role in enhancing the performance of learning algorithms, especially for high-dimensional datasets. In recent times, FS has been framed as a multi-objective optimization problem, leading to the application of various multi-objective evolutionary algorithms (MOEAs) to address it. However, the solution space expands exponentially with the dataset’s dimensionality. Simultaneously, the extensive search space often results in numerous local optimal solutions due to a large proportion of unrelated and redundant features [H. Adeli and H. S. Park, Fully automated design of super-high-rise building structures by a hybrid ai model on a massively parallel machine, AI Mag. 17 (1996) 87–93]. Consequently, existing MOEAs struggle with local optima stagnation, particularly in large-scale multi-objective FS problems (LSMOFSPs). Different LSMOFSPs generally exhibit unique characteristics, yet most existing MOEAs rely on a single candidate solution generation strategy (CSGS), which may be less efficient for diverse LSMOFSPs [H. S. Park and H. Adeli, Distributed neural dynamics algorithms for optimization of large steel structures, J. Struct. Eng. ASCE 123 (1997) 880–888; M. Aldwaik and H. Adeli, Advances in optimization of highrise building structures, Struct. Multidiscip. Optim. 50 (2014) 899–919; E. G. González, J. R. Villar, Q. Tan, J. Sedano and C. Chira, An efficient multi-robot path planning solution using a* and coevolutionary algorithms, Integr. Comput. Aided Eng. 30 (2022) 41–52]. Moreover, selecting an appropriate MOEA and determining its corresponding parameter values for a specified LSMOFSP is time-consuming. To address these challenges, a multi-objective self-adaptive particle swarm optimization (MOSaPSO) algorithm is proposed, combined with a rapid nondominated sorting approach. MOSaPSO employs a self-adaptive mechanism, along with five modified efficient CSGSs, to generate new solutions. Experiments were conducted on ten datasets, and the results demonstrate that the number of features is effectively reduced by MOSaPSO while lowering the classification error rate. Furthermore, superior performance is observed in comparison to its counterparts on both the training and test sets, with advantages becoming increasingly evident as the dimensionality increases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助虚幻初之采纳,获得10
1秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
云飞扬应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
小人物的坚持完成签到 ,获得积分10
4秒前
nk完成签到 ,获得积分10
5秒前
JamesPei应助虚幻初之采纳,获得10
6秒前
乐乐应助677采纳,获得10
7秒前
8秒前
科研糊涂神完成签到,获得积分10
9秒前
Lucas应助小秦秦采纳,获得10
11秒前
博修发布了新的文献求助10
14秒前
无限太阳完成签到,获得积分10
18秒前
李健的小迷弟应助博修采纳,获得10
19秒前
陌予完成签到 ,获得积分10
19秒前
19秒前
qrg完成签到,获得积分20
20秒前
i3utter完成签到,获得积分10
22秒前
承序完成签到,获得积分10
22秒前
23秒前
25秒前
zora完成签到 ,获得积分10
25秒前
JK发布了新的文献求助10
28秒前
方方别方完成签到 ,获得积分10
28秒前
小狗发布了新的文献求助10
35秒前
YiXianCoA完成签到 ,获得积分10
37秒前
热心语柔完成签到 ,获得积分10
39秒前
Sylvia完成签到 ,获得积分10
40秒前
JK完成签到,获得积分10
43秒前
DoctorYan完成签到,获得积分10
44秒前
慕玖淇完成签到 ,获得积分10
44秒前
48秒前
vernal完成签到 ,获得积分10
50秒前
50秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959928
求助须知:如何正确求助?哪些是违规求助? 3506172
关于积分的说明 11128138
捐赠科研通 3238123
什么是DOI,文献DOI怎么找? 1789535
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024