Multi-Objective Self-Adaptive Particle Swarm Optimization for Large-Scale Feature Selection in Classification

粒子群优化 维数之咒 选择(遗传算法) 计算机科学 结构 特征(语言学) 局部最优 人工智能 进化算法 遗传算法 最优化问题 数学优化 算法 机器学习 数学 程序设计语言 语言学 哲学
作者
Chenyi Zhang,Yu Xue,Ferrante Neri,Xu Cai,Adam Słowik
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:34 (03) 被引量:5
标识
DOI:10.1142/s012906572450014x
摘要

Feature selection (FS) is recognized for its role in enhancing the performance of learning algorithms, especially for high-dimensional datasets. In recent times, FS has been framed as a multi-objective optimization problem, leading to the application of various multi-objective evolutionary algorithms (MOEAs) to address it. However, the solution space expands exponentially with the dataset’s dimensionality. Simultaneously, the extensive search space often results in numerous local optimal solutions due to a large proportion of unrelated and redundant features [H. Adeli and H. S. Park, Fully automated design of super-high-rise building structures by a hybrid ai model on a massively parallel machine, AI Mag. 17 (1996) 87–93]. Consequently, existing MOEAs struggle with local optima stagnation, particularly in large-scale multi-objective FS problems (LSMOFSPs). Different LSMOFSPs generally exhibit unique characteristics, yet most existing MOEAs rely on a single candidate solution generation strategy (CSGS), which may be less efficient for diverse LSMOFSPs [H. S. Park and H. Adeli, Distributed neural dynamics algorithms for optimization of large steel structures, J. Struct. Eng. ASCE 123 (1997) 880–888; M. Aldwaik and H. Adeli, Advances in optimization of highrise building structures, Struct. Multidiscip. Optim. 50 (2014) 899–919; E. G. González, J. R. Villar, Q. Tan, J. Sedano and C. Chira, An efficient multi-robot path planning solution using a* and coevolutionary algorithms, Integr. Comput. Aided Eng. 30 (2022) 41–52]. Moreover, selecting an appropriate MOEA and determining its corresponding parameter values for a specified LSMOFSP is time-consuming. To address these challenges, a multi-objective self-adaptive particle swarm optimization (MOSaPSO) algorithm is proposed, combined with a rapid nondominated sorting approach. MOSaPSO employs a self-adaptive mechanism, along with five modified efficient CSGSs, to generate new solutions. Experiments were conducted on ten datasets, and the results demonstrate that the number of features is effectively reduced by MOSaPSO while lowering the classification error rate. Furthermore, superior performance is observed in comparison to its counterparts on both the training and test sets, with advantages becoming increasingly evident as the dimensionality increases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mayne完成签到,获得积分20
1秒前
生米A吴完成签到,获得积分10
3秒前
魁梧的曼易完成签到,获得积分10
5秒前
6秒前
纯真的元风完成签到,获得积分10
7秒前
大个应助嘿哈采纳,获得10
8秒前
8秒前
哈哈哈哈哈哈哈哈哈完成签到,获得积分20
8秒前
港岛妹妹应助小达人采纳,获得20
10秒前
13秒前
13秒前
乐观的眼睛完成签到,获得积分10
14秒前
隔壁巷子里的劉完成签到 ,获得积分10
14秒前
18秒前
伯赏雁蓉发布了新的文献求助10
18秒前
花心的小白菜完成签到,获得积分10
18秒前
贾小闲完成签到,获得积分10
19秒前
19秒前
21秒前
24秒前
嘿哈发布了新的文献求助10
24秒前
qujue001发布了新的文献求助10
25秒前
信仰完成签到,获得积分10
26秒前
整齐惜芹完成签到,获得积分10
28秒前
英姑应助李昕123采纳,获得10
32秒前
思源应助lfg采纳,获得10
32秒前
35秒前
bkagyin应助施不评采纳,获得10
37秒前
MIRROR完成签到,获得积分10
39秒前
小夏发布了新的文献求助10
40秒前
41秒前
43秒前
44秒前
dd完成签到,获得积分10
45秒前
星辰大海应助科研通管家采纳,获得10
46秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
47秒前
mhq发布了新的文献求助10
47秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254046
求助须知:如何正确求助?哪些是违规求助? 2896409
关于积分的说明 8292456
捐赠科研通 2565281
什么是DOI,文献DOI怎么找? 1392910
科研通“疑难数据库(出版商)”最低求助积分说明 652405
邀请新用户注册赠送积分活动 629837