YOLO-TLA: An Efficient and Lightweight Small Object Detection Model based on YOLOv5

对象(语法) 计算机科学 人工智能
作者
Peng Gao,Chun-Lin Ji,Tao Yu,Ruyue Yuan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2402.14309
摘要

Object detection, a crucial aspect of computer vision, has seen significant advancements in accuracy and robustness. Despite these advancements, practical applications still face notable challenges, primarily the inaccurate detection or missed detection of small objects. In this paper, we propose YOLO-TLA, an advanced object detection model building on YOLOv5. We first introduce an additional detection layer for small objects in the neck network pyramid architecture, thereby producing a feature map of a larger scale to discern finer features of small objects. Further, we integrate the C3CrossCovn module into the backbone network. This module uses sliding window feature extraction, which effectively minimizes both computational demand and the number of parameters, rendering the model more compact. Additionally, we have incorporated a global attention mechanism into the backbone network. This mechanism combines the channel information with global information to create a weighted feature map. This feature map is tailored to highlight the attributes of the object of interest, while effectively ignoring irrelevant details. In comparison to the baseline YOLOv5s model, our newly developed YOLO-TLA model has shown considerable improvements on the MS COCO validation dataset, with increases of 4.6% in mAP@0.5 and 4% in mAP@0.5:0.95, all while keeping the model size compact at 9.49M parameters. Further extending these improvements to the YOLOv5m model, the enhanced version exhibited a 1.7% and 1.9% increase in mAP@0.5 and mAP@0.5:0.95, respectively, with a total of 27.53M parameters. These results validate the YOLO-TLA model's efficient and effective performance in small object detection, achieving high accuracy with fewer parameters and computational demands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢快小土豆完成签到,获得积分10
1秒前
DayFu完成签到 ,获得积分10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
哎嘿应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
不配.应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
1秒前
英俊的铭应助科研通管家采纳,获得30
1秒前
打打应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
聪明赛君应助科研通管家采纳,获得10
2秒前
平常的伊应助科研通管家采纳,获得10
2秒前
HEIKU应助科研通管家采纳,获得20
2秒前
体贴的之卉完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
天地一体完成签到,获得积分10
2秒前
3秒前
zpmi完成签到,获得积分10
3秒前
橘子完成签到,获得积分10
3秒前
4秒前
慈祥的爆米花完成签到,获得积分10
4秒前
Eugenia完成签到,获得积分10
4秒前
5秒前
究极美少女进化完成签到,获得积分10
6秒前
www268完成签到 ,获得积分10
7秒前
7秒前
7秒前
teborlee完成签到,获得积分10
8秒前
Cherry完成签到 ,获得积分10
8秒前
沉默的二娘完成签到,获得积分10
8秒前
tianzml0应助XUHYBOR采纳,获得10
8秒前
CodeCraft应助yunxiao采纳,获得10
8秒前
9秒前
高分求助中
Evolution 10000
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158816
求助须知:如何正确求助?哪些是违规求助? 2810026
关于积分的说明 7885324
捐赠科研通 2468805
什么是DOI,文献DOI怎么找? 1314396
科研通“疑难数据库(出版商)”最低求助积分说明 630616
版权声明 602012