Analyzing predictors of in-hospital mortality in patients with acute ST-segment elevation myocardial infarction using an evolved machine learning approach

支持向量机 机器学习 人工智能 心肌梗塞 特征选择 渡线 计算机科学 医学 内科学
作者
Mengge Gong,Dongjie Liang,Diyun Xu,Youkai Jin,Guoqing Wang,Peiren Shan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:170: 107950-107950 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.107950
摘要

Acute ST-segment elevation myocardial infarction (STEMI) is a severe cardiac ailment characterized by the sudden complete blockage of a portion of the coronary artery, leading to the interruption of blood supply to the myocardium. This study examines the medical records of 3205 STEMI patients admitted to the coronary care unit of the First Affiliated Hospital of Wenzhou Medical University from January 2014 to December 2021. In this research, a novel predictive framework for STEMI is proposed, incorporating evolutionary computational methods and machine learning techniques. A variant algorithm, AGCOSCA, is introduced by integrating crossover operation and observation bee strategy into the original Sine Cosine Algorithm (SCA). The effectiveness of AGCOSCA is initially validated using IEEE CEC 2017 benchmark functions, demonstrating its ability to mitigate the deficiency in local mining after SCA random perturbation. Building upon this foundation, the AGCOSCA approach has been paired with Support Vector Machine (SVM) to forge the predictive framework referred to as AGCOSCA-SVM. Specifically, AGCOSCA is employed to refine the selection of predictors from a substantial feature set before SVM is utilized to forecast the occurrence of STEMI. In our analysis, we observed that SVM excels at managing nonlinear data relationships, a strength that becomes particularly prominent in smaller datasets of STEMI patients. To assess the effectiveness of AGCOSCA-SVM, diagnostic experiments were conducted based on the STEMI sample data. Results indicate that AGCOSCA-SVM outperforms traditional machine learning methods, achieving superior Accuracy, Sensitivity, and Specificity values of 97.83 %, 93.75 %, and 96.67 %, respectively. The selected features, such as acute kidney injury (AKI) stage, fibrinogen, mean platelet volume (MPV), free triiodothyronine (FT3), diuretics, and Killip class during hospitalization, are identified as crucial for predicting STEMI. In conclusion, AGCOSCA-SVM emerges as a promising model framework for supporting the diagnostic process of STEMI, showcasing potential applications in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助阿白采纳,获得10
4秒前
5秒前
小新完成签到 ,获得积分10
6秒前
万能图书馆应助pencil采纳,获得10
9秒前
甜甜醉波完成签到,获得积分10
11秒前
nancyzhao发布了新的文献求助10
12秒前
shor0414完成签到 ,获得积分10
12秒前
万元帅完成签到 ,获得积分10
13秒前
MQueen完成签到,获得积分10
15秒前
KK发布了新的文献求助30
16秒前
Spark完成签到,获得积分10
18秒前
BZPL完成签到,获得积分10
21秒前
niumi190完成签到,获得积分10
22秒前
XIeXIe完成签到,获得积分10
23秒前
lemonlmm完成签到,获得积分0
23秒前
眼睛大智宸完成签到,获得积分10
25秒前
手握灵珠常奋笔完成签到,获得积分10
26秒前
Raylihuang完成签到,获得积分10
26秒前
张帅完成签到,获得积分10
26秒前
Yukiiiii完成签到,获得积分10
27秒前
11完成签到,获得积分10
27秒前
yaolei完成签到,获得积分10
28秒前
28秒前
helinahs完成签到 ,获得积分10
28秒前
无花果应助风之旅人采纳,获得10
29秒前
白华苍松发布了新的文献求助20
30秒前
水深三英尺完成签到 ,获得积分10
30秒前
32秒前
上善若水呦完成签到 ,获得积分10
33秒前
33秒前
好喜欢笔鱼完成签到,获得积分10
33秒前
上官若男应助Spark采纳,获得10
34秒前
keyan完成签到 ,获得积分10
35秒前
garbage完成签到 ,获得积分10
36秒前
追寻紫安完成签到,获得积分10
36秒前
37秒前
37秒前
surain发布了新的文献求助10
37秒前
小琪猪完成签到,获得积分10
39秒前
02完成签到,获得积分10
40秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788096
关于积分的说明 7784635
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011