Analyzing predictors of in-hospital mortality in patients with acute ST-segment elevation myocardial infarction using an evolved machine learning approach

支持向量机 机器学习 人工智能 心肌梗塞 特征选择 渡线 计算机科学 医学 内科学
作者
Mengge Gong,Dongjie Liang,Diyun Xu,Youkai Jin,Guoqing Wang,Peiren Shan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:170: 107950-107950 被引量:10
标识
DOI:10.1016/j.compbiomed.2024.107950
摘要

Acute ST-segment elevation myocardial infarction (STEMI) is a severe cardiac ailment characterized by the sudden complete blockage of a portion of the coronary artery, leading to the interruption of blood supply to the myocardium. This study examines the medical records of 3205 STEMI patients admitted to the coronary care unit of the First Affiliated Hospital of Wenzhou Medical University from January 2014 to December 2021. In this research, a novel predictive framework for STEMI is proposed, incorporating evolutionary computational methods and machine learning techniques. A variant algorithm, AGCOSCA, is introduced by integrating crossover operation and observation bee strategy into the original Sine Cosine Algorithm (SCA). The effectiveness of AGCOSCA is initially validated using IEEE CEC 2017 benchmark functions, demonstrating its ability to mitigate the deficiency in local mining after SCA random perturbation. Building upon this foundation, the AGCOSCA approach has been paired with Support Vector Machine (SVM) to forge the predictive framework referred to as AGCOSCA-SVM. Specifically, AGCOSCA is employed to refine the selection of predictors from a substantial feature set before SVM is utilized to forecast the occurrence of STEMI. In our analysis, we observed that SVM excels at managing nonlinear data relationships, a strength that becomes particularly prominent in smaller datasets of STEMI patients. To assess the effectiveness of AGCOSCA-SVM, diagnostic experiments were conducted based on the STEMI sample data. Results indicate that AGCOSCA-SVM outperforms traditional machine learning methods, achieving superior Accuracy, Sensitivity, and Specificity values of 97.83 %, 93.75 %, and 96.67 %, respectively. The selected features, such as acute kidney injury (AKI) stage, fibrinogen, mean platelet volume (MPV), free triiodothyronine (FT3), diuretics, and Killip class during hospitalization, are identified as crucial for predicting STEMI. In conclusion, AGCOSCA-SVM emerges as a promising model framework for supporting the diagnostic process of STEMI, showcasing potential applications in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
可爱的函函应助默默问晴采纳,获得10
1秒前
soapffz完成签到,获得积分0
1秒前
田様应助伶俐的招牌采纳,获得10
2秒前
2秒前
2秒前
3秒前
无花果应助leec采纳,获得30
3秒前
炙热萝发布了新的文献求助10
4秒前
Auh完成签到,获得积分10
4秒前
AN发布了新的文献求助10
4秒前
hailey发布了新的文献求助10
6秒前
7秒前
zhuhe完成签到,获得积分10
7秒前
7秒前
丰知然应助小点点采纳,获得10
8秒前
13发布了新的文献求助10
8秒前
Hu完成签到,获得积分20
9秒前
9秒前
Hayat发布了新的文献求助50
9秒前
烟花应助灵巧的石头采纳,获得10
9秒前
10秒前
大模型应助调皮的巧凡采纳,获得10
10秒前
10秒前
10秒前
别管我了完成签到,获得积分10
10秒前
11秒前
yxy发布了新的文献求助10
11秒前
健康小宋完成签到,获得积分10
11秒前
斯文败类应助CDX采纳,获得10
11秒前
善良的函发布了新的文献求助10
12秒前
打打应助含蓄的傲霜采纳,获得10
13秒前
14秒前
14秒前
15秒前
wanci应助13采纳,获得10
15秒前
silentforsure发布了新的文献求助10
16秒前
llyu完成签到,获得积分10
16秒前
嘟嘟完成签到,获得积分10
16秒前
樱书发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578047
求助须知:如何正确求助?哪些是违规求助? 4663043
关于积分的说明 14744355
捐赠科研通 4603721
什么是DOI,文献DOI怎么找? 2526643
邀请新用户注册赠送积分活动 1496203
关于科研通互助平台的介绍 1465657