Analyzing predictors of in-hospital mortality in patients with acute ST-segment elevation myocardial infarction using an evolved machine learning approach

支持向量机 机器学习 人工智能 心肌梗塞 特征选择 渡线 计算机科学 医学 内科学
作者
Mengge Gong,Dongjie Liang,Diyun Xu,Youkai Jin,Guoqing Wang,Peiren Shan
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 107950-107950 被引量:8
标识
DOI:10.1016/j.compbiomed.2024.107950
摘要

Acute ST-segment elevation myocardial infarction (STEMI) is a severe cardiac ailment characterized by the sudden complete blockage of a portion of the coronary artery, leading to the interruption of blood supply to the myocardium. This study examines the medical records of 3205 STEMI patients admitted to the coronary care unit of the First Affiliated Hospital of Wenzhou Medical University from January 2014 to December 2021. In this research, a novel predictive framework for STEMI is proposed, incorporating evolutionary computational methods and machine learning techniques. A variant algorithm, AGCOSCA, is introduced by integrating crossover operation and observation bee strategy into the original Sine Cosine Algorithm (SCA). The effectiveness of AGCOSCA is initially validated using IEEE CEC 2017 benchmark functions, demonstrating its ability to mitigate the deficiency in local mining after SCA random perturbation. Building upon this foundation, the AGCOSCA approach has been paired with Support Vector Machine (SVM) to forge the predictive framework referred to as AGCOSCA-SVM. Specifically, AGCOSCA is employed to refine the selection of predictors from a substantial feature set before SVM is utilized to forecast the occurrence of STEMI. In our analysis, we observed that SVM excels at managing nonlinear data relationships, a strength that becomes particularly prominent in smaller datasets of STEMI patients. To assess the effectiveness of AGCOSCA-SVM, diagnostic experiments were conducted based on the STEMI sample data. Results indicate that AGCOSCA-SVM outperforms traditional machine learning methods, achieving superior Accuracy, Sensitivity, and Specificity values of 97.83 %, 93.75 %, and 96.67 %, respectively. The selected features, such as acute kidney injury (AKI) stage, fibrinogen, mean platelet volume (MPV), free triiodothyronine (FT3), diuretics, and Killip class during hospitalization, are identified as crucial for predicting STEMI. In conclusion, AGCOSCA-SVM emerges as a promising model framework for supporting the diagnostic process of STEMI, showcasing potential applications in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
惠惠不会完成签到,获得积分10
1秒前
westbobo发布了新的文献求助10
2秒前
橙子发布了新的文献求助30
3秒前
uu发布了新的文献求助10
3秒前
3秒前
你想不想变成一粒芝麻完成签到,获得积分10
4秒前
Marjorie完成签到,获得积分10
4秒前
去晒月亮发布了新的文献求助10
4秒前
4秒前
5秒前
领导范儿应助神奇小鹿采纳,获得10
6秒前
无私竺完成签到,获得积分10
6秒前
深情的鑫鹏完成签到,获得积分10
6秒前
Rondab应助宛拗采纳,获得10
7秒前
7秒前
桐桐应助高序采纳,获得10
7秒前
8秒前
9秒前
大帅完成签到,获得积分20
9秒前
雁夜完成签到,获得积分10
9秒前
9秒前
落寞之云发布了新的文献求助10
9秒前
10秒前
上官若男应助cyw采纳,获得10
11秒前
细腻亦巧完成签到,获得积分10
11秒前
机智念桃完成签到,获得积分20
11秒前
11秒前
儒雅的翎完成签到,获得积分10
12秒前
反向大笨钟完成签到,获得积分10
12秒前
12秒前
Elix完成签到,获得积分10
15秒前
DTH关闭了DTH文献求助
15秒前
享邑发布了新的文献求助10
15秒前
娃哈哈发布了新的文献求助10
15秒前
田様应助落寞之云采纳,获得10
15秒前
15秒前
传奇3应助浮云采纳,获得10
16秒前
16秒前
徐琪发布了新的文献求助10
16秒前
bkagyin应助kiuikiu采纳,获得10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974882
求助须知:如何正确求助?哪些是违规求助? 3519431
关于积分的说明 11198315
捐赠科研通 3255698
什么是DOI,文献DOI怎么找? 1797904
邀请新用户注册赠送积分活动 877237
科研通“疑难数据库(出版商)”最低求助积分说明 806219