亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analyzing predictors of in-hospital mortality in patients with acute ST-segment elevation myocardial infarction using an evolved machine learning approach

支持向量机 机器学习 人工智能 心肌梗塞 特征选择 渡线 计算机科学 医学 内科学
作者
Mengge Gong,Dongjie Liang,Diyun Xu,Youkai Jin,Guoqing Wang,Peiren Shan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:170: 107950-107950 被引量:10
标识
DOI:10.1016/j.compbiomed.2024.107950
摘要

Acute ST-segment elevation myocardial infarction (STEMI) is a severe cardiac ailment characterized by the sudden complete blockage of a portion of the coronary artery, leading to the interruption of blood supply to the myocardium. This study examines the medical records of 3205 STEMI patients admitted to the coronary care unit of the First Affiliated Hospital of Wenzhou Medical University from January 2014 to December 2021. In this research, a novel predictive framework for STEMI is proposed, incorporating evolutionary computational methods and machine learning techniques. A variant algorithm, AGCOSCA, is introduced by integrating crossover operation and observation bee strategy into the original Sine Cosine Algorithm (SCA). The effectiveness of AGCOSCA is initially validated using IEEE CEC 2017 benchmark functions, demonstrating its ability to mitigate the deficiency in local mining after SCA random perturbation. Building upon this foundation, the AGCOSCA approach has been paired with Support Vector Machine (SVM) to forge the predictive framework referred to as AGCOSCA-SVM. Specifically, AGCOSCA is employed to refine the selection of predictors from a substantial feature set before SVM is utilized to forecast the occurrence of STEMI. In our analysis, we observed that SVM excels at managing nonlinear data relationships, a strength that becomes particularly prominent in smaller datasets of STEMI patients. To assess the effectiveness of AGCOSCA-SVM, diagnostic experiments were conducted based on the STEMI sample data. Results indicate that AGCOSCA-SVM outperforms traditional machine learning methods, achieving superior Accuracy, Sensitivity, and Specificity values of 97.83 %, 93.75 %, and 96.67 %, respectively. The selected features, such as acute kidney injury (AKI) stage, fibrinogen, mean platelet volume (MPV), free triiodothyronine (FT3), diuretics, and Killip class during hospitalization, are identified as crucial for predicting STEMI. In conclusion, AGCOSCA-SVM emerges as a promising model framework for supporting the diagnostic process of STEMI, showcasing potential applications in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lr完成签到 ,获得积分10
5秒前
脑洞疼应助安静海露采纳,获得10
28秒前
37秒前
HI完成签到 ,获得积分10
40秒前
安静海露发布了新的文献求助10
42秒前
冰凌心恋完成签到,获得积分0
45秒前
于yu完成签到 ,获得积分10
47秒前
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
chunlily完成签到,获得积分10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
郗妫完成签到,获得积分10
2分钟前
2分钟前
jiaqiao发布了新的文献求助10
3分钟前
3分钟前
爆米花应助安静海露采纳,获得10
3分钟前
3分钟前
3分钟前
moika发布了新的文献求助10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
安静海露发布了新的文献求助10
3分钟前
如意竺完成签到,获得积分0
3分钟前
哈哈哈完成签到 ,获得积分10
4分钟前
4分钟前
红火完成签到 ,获得积分10
4分钟前
三三完成签到,获得积分10
4分钟前
三心草完成签到 ,获得积分10
4分钟前
斯文的访烟完成签到,获得积分10
5分钟前
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772968
求助须知:如何正确求助?哪些是违规求助? 5604636
关于积分的说明 15430227
捐赠科研通 4905689
什么是DOI,文献DOI怎么找? 2639648
邀请新用户注册赠送积分活动 1587551
关于科研通互助平台的介绍 1542496