已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Inter-site generalizability of EEG based age prediction algorithms in the preterm infant

概化理论 特征选择 支持向量机 特征(语言学) 模式识别(心理学) 脑电图 人工智能 计算机科学 数学 医学 统计 语言学 精神科 哲学
作者
Nathan J. Stevenson,Tone Nordvik,Cathrine Nygaard Espeland,Vito Giordano,Sissel J. Moltu,Pål G. Larsson,Katrin Klebermass-Schrehof,Tom Stiris,Sampsa Vanhatalo
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:44 (7): 07NT01-07NT01
标识
DOI:10.1088/1361-6579/ace755
摘要

Objective. To overcome the effects of site differences in EEG-based brain age prediction in preterm infants.Approach. We used a 'bag of features' with a combination function estimated using support vector regression (SVR) and feature selection (filter then wrapper) to predict post-menstrual age (PMA). The SVR was trained on a dataset containing 138 EEG recordings from 37 preterm infants (site 1). A separate set of 36 EEG recordings from 36 preterm infants was used to validate the age predictor (site 2). The feature distributions were compared between sites and a restricted feature set was constructed using only features that were not significantly different between sites. The mean absolute error between predicted age and PMA was used to define the accuracy of prediction and successful validation was defined as no significant differences in error between site 1 (cross-validation) and site 2.Main results. The age predictor based on all features and trained on site 1 was not validated on site 2 (p< 0.001; MAE site 1 = 1.0 weeks,n= 59 versus MAE site 2 = 2.1 weeks,n= 36). The MAE was improved by training on a restricted features set (MAE site 1 = 1.0 weeks,n= 59 versus MAE site 2 = 1.1 weeks,n= 36), resulting in a validated age predictor when applied to site 2 (p= 0.68). The features selected from the restricted feature set when training on site 1 closely aligned with features selected when trained on a combination of data from site 1 and site 2.Significance. The ability of EEG classifiers, such as brain age prediction, to maintain accuracy on data collected at other sites may be challenged by unexpected, site-dependent differences in EEG signals. Permitting a small amount of data leakage between sites improves generalization, leading towards universal methods of EEG interpretation in preterm infants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljy阿完成签到 ,获得积分10
2秒前
孙成成完成签到 ,获得积分10
8秒前
我要毕业完成签到,获得积分20
9秒前
缓慢海蓝完成签到 ,获得积分10
15秒前
没有昵称完成签到 ,获得积分10
17秒前
HH发布了新的文献求助10
21秒前
秋秋完成签到,获得积分10
21秒前
26秒前
28秒前
香蕉觅云应助tbb采纳,获得10
30秒前
pop完成签到,获得积分10
30秒前
领导范儿应助HH采纳,获得30
33秒前
33秒前
liuzengzhang666发布了新的文献求助100
34秒前
Dani完成签到,获得积分10
34秒前
pagoda完成签到,获得积分10
35秒前
gaoyue完成签到,获得积分10
35秒前
tracer526完成签到,获得积分10
35秒前
岁岁安发布了新的文献求助10
37秒前
钻头药水完成签到 ,获得积分20
37秒前
ajun发布了新的文献求助10
37秒前
毛豆应助鱼笙采纳,获得10
40秒前
桐桐应助个性的小丸子采纳,获得10
42秒前
田様应助liuzengzhang666采纳,获得10
43秒前
47秒前
50秒前
50秒前
夏姬宁静完成签到,获得积分10
51秒前
52秒前
俏皮念寒发布了新的文献求助10
53秒前
55秒前
56秒前
JSY发布了新的文献求助10
58秒前
shasha完成签到,获得积分10
59秒前
华仔应助科研通管家采纳,获得10
59秒前
思源应助科研通管家采纳,获得10
59秒前
英姑应助科研通管家采纳,获得10
59秒前
领导范儿应助科研通管家采纳,获得10
59秒前
充电宝应助科研通管家采纳,获得10
59秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455489
求助须知:如何正确求助?哪些是违规求助? 3050730
关于积分的说明 9022491
捐赠科研通 2739302
什么是DOI,文献DOI怎么找? 1502640
科研通“疑难数据库(出版商)”最低求助积分说明 694549
邀请新用户注册赠送积分活动 693358