石墨烯
材料科学
石墨
三聚氰胺
氧化石墨烯纸
球磨机
纳米技术
兴奋剂
石墨烯泡沫
复合材料
化学工程
光电子学
工程类
作者
Ali Hendaoui,Abdullah Alshammari
出处
期刊:Materials
[MDPI AG]
日期:2022-12-26
卷期号:16 (1): 219-219
被引量:5
摘要
Holey graphene, consisting of graphene sheets with in-plane nanopores, has recently attracted more attention as it expands graphene applications to other fields inaccessible by the pristine graphene. To ensure an effective implementation of holey graphene in the market, it is crucial to explore new preparation methods that are simple, cost effective, eco-friendly, versatile, and scalable. While ball milling of graphite in presence of exfoliating agents was found very effective in the preparation of graphene (doped and undoped) and graphene-composites, this technique remains unexplored for the preparation of holey graphene. In the present work, Nitrogen-doped multilayer holey graphene sheets were prepared by an all-solid, one-step procedure based on high-energy ball milling of graphite as the starting material in presence of melamine in a shaker-type mill for 1 hour under ambient conditions. Melamine acted simultaneously as an exfoliating agent to enhance the exfoliation of graphene layers and a diluent to protect graphite against the continuous fragmentation into amorphous carbon during the high-energy "shock" mode of ball milling. The high-energy "shock" mode of ball milling of graphite in presence of melamine induced the formation of multilayer defective graphene as an intermediate product before being converted into N-doped multilayer holey graphene after the removal of the in-plane defects during the milling process. The characterization of the final product confirmed the formation of N-doped multilayer holey graphene with a content in nitrogen as high as 12.96 at.%, making it promising for energy storage and energy conversion applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI