亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing Gout Diagnosis with Deep Learning in Dual-energy Computed Tomography: A Retrospective Analysis of Crystal and Artifact Differentiation

医学 痛风 接收机工作特性 人工智能 核医学 放射科 卷积神经网络 预测值 支持向量机 断层摄影术 模式识别(心理学) 内科学 计算机科学
作者
Yun‐Jung Choi,Riel Castro‐Zunti,Daewoo Lee,Jae Sung Yun,Younhee Choi,Seok‐Bum Ko,Eun Jung Choi,Gong Yong Jin,Wan‐Hee Yoo,Eun Hae Park
出处
期刊:Rheumatology [Oxford University Press]
标识
DOI:10.1093/rheumatology/keae523
摘要

Abstract Objectives To evaluate whether the application of deep learning (DL) could achieve high diagnostic accuracy in differentiating between green colour coding, indicative of tophi, and clumpy artifacts observed in dual-energy computed tomography (DECT) scans. Methods A comprehensive analysis of 18 704 regions of interest (ROIs) extracted from green foci in DECT scans obtained from 47 patients with gout and 27 gout-free controls was performed. The ROIs were categorized into three size groups: small, medium, and large. Convolutional neural network (CNN) analysis on a per-lesion basis and support vector machine (SVM) analysis on a per-patient basis were performed. The area under the receiver operating characteristic curve, sensitivity, specificity, positive predictive value, and negative predictive value of the models were compared. Results For small ROIs, the sensitivity and specificity of the CNN model were 81.5% and 96.1%, respectively; for medium ROIs, 82.7% and 96.1%, respectively; for large ROIs, 91.8% and 86.9%, respectively. Additionally, the DL algorithm exhibited accuracies of 88.5%, 88.6%, and 91.0% for small, medium, and large ROIs, respectively. In the per-patient analysis, the SVM approach demonstrated a sensitivity of 87.2%, a specificity of 100%, and an accuracy of 91.8% in distinguishing between patients with gout and gout-free controls. Conclusion Our study demonstrates the effectiveness of the DL algorithm in differentiating between green colour coding indicative of crystal deposition and clumpy artifacts in DECT scans. With high sensitivity, specificity, and accuracy, the utilization of DL in DECT for diagnosing gout enables precise lesion classification, facilitating early-stage diagnosis and promoting timely intervention approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
26秒前
1分钟前
1分钟前
自信秋柔给自信秋柔的求助进行了留言
1分钟前
11发布了新的文献求助10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
爱静静完成签到,获得积分0
2分钟前
lovelife发布了新的文献求助10
2分钟前
lovelife完成签到,获得积分10
2分钟前
2分钟前
11完成签到,获得积分10
2分钟前
自信秋柔完成签到,获得积分20
2分钟前
3分钟前
巴斯光年111完成签到,获得积分10
3分钟前
酷波er应助巴斯光年111采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
研友_892kOL完成签到,获得积分10
4分钟前
生姜批发刘哥完成签到 ,获得积分10
4分钟前
4分钟前
jyy发布了新的文献求助200
4分钟前
4分钟前
完美世界应助地尔硫卓采纳,获得10
4分钟前
小文子完成签到 ,获得积分10
4分钟前
烂漫的汲完成签到,获得积分10
4分钟前
4分钟前
香蕉觅云应助毕襄采纳,获得10
4分钟前
kang发布了新的文献求助10
4分钟前
自信秋柔发布了新的文献求助10
4分钟前
5分钟前
毕襄发布了新的文献求助10
5分钟前
毕襄完成签到,获得积分20
5分钟前
Lucas应助科研通管家采纳,获得10
5分钟前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344197
求助须知:如何正确求助?哪些是违规求助? 2971147
关于积分的说明 8646779
捐赠科研通 2651434
什么是DOI,文献DOI怎么找? 1451760
科研通“疑难数据库(出版商)”最低求助积分说明 672282
邀请新用户注册赠送积分活动 661790