亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

d-Phenylalanine Alleviates the Corrosion by Desulfovibrio vulgaris in Saline Water

生理盐水 腐蚀 普通脱硫弧菌 盐水 苯丙氨酸 化学 冶金 材料科学 医学 内科学 生物化学 地质学 氨基酸 海洋学 细菌 盐度 古生物学
作者
Hongyi Li,Zhengyan Kang,Chengcheng Ding,Xinxin Zhao,Yiqi Cao,Baiyu Zhang,Chao Song,Shuguang Wang
出处
期刊:ACS ES&T engineering [American Chemical Society]
标识
DOI:10.1021/acsestengg.4c00362
摘要

A biofilm is a major contributor to microbiologically influenced corrosion (MIC) in cooling water systems, resulting in severe economical and environmental impacts. d-Amino acids offer a potential alternative for preventing biofilm formation in these systems, where salinity levels vary due to diverse water sources, such as freshwater and diluted seawater. However, the impact of d-amino acids on corrosion inhibition under saline conditions remains unexplored. In this study, we evaluated the effect of d-phenylalanine (d-Phe) on corrosion by Desulfovibrio vulgaris at three salinity levels. d-Phe (10 mg/L) played little role in corrosion inhibition at low salinity (5 g/L) but obviously decreased the corrosion by 40.6% and 59.6% at moderate salinity (15 g/L) and high salinity (20 g/L), respectively. It was attributed to that d-Phe reduced the secretion of extracellular protein from 292.5 μg/mg to 245.6 μg/mg and decreased the biofilm thickness from 25.46 μm to 20.87 μm on the coupon surface. Besides, d-Phe decreased the sessile cells from 15.1 × 107 cells/cm2 to 12.8 × 107 cells/cm2 at high salinity. Furthermore, transcriptome analysis found that indole, the signal molecule negatively regulating the biofilm formation, was increased by adding d-Phe at high salinity. Moreover, peptidoglycan reorganization was strengthened at high osmotic pressure via absorbing additional d-Phe, leading to weak bacterial adhesion. The work provides mechanistic insights into the application of d-Phe for biofilm inhibition and MIC mitigation in industries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冯不言完成签到,获得积分10
30秒前
31秒前
32秒前
36秒前
无花果应助世良采纳,获得10
36秒前
体贴花卷发布了新的文献求助30
37秒前
AixLeft完成签到 ,获得积分10
47秒前
liuliu应助多情向日葵采纳,获得10
54秒前
在水一方应助多情向日葵采纳,获得10
54秒前
54秒前
由道罡完成签到 ,获得积分10
54秒前
1分钟前
多情向日葵完成签到,获得积分20
1分钟前
世良发布了新的文献求助10
1分钟前
1分钟前
科研小举人完成签到,获得积分10
1分钟前
1分钟前
YiXianCoA完成签到 ,获得积分10
1分钟前
斯文败类应助世良采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助via采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
爆米花应助体贴花卷采纳,获得10
1分钟前
浪里白条发布了新的文献求助10
1分钟前
2分钟前
2分钟前
Criminology34完成签到,获得积分0
2分钟前
世良发布了新的文献求助10
2分钟前
领导范儿应助世良采纳,获得10
2分钟前
体贴花卷发布了新的文献求助10
2分钟前
科研通AI6应助体贴花卷采纳,获得10
2分钟前
2分钟前
2分钟前
麻辣香锅发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650780
求助须知:如何正确求助?哪些是违规求助? 4781689
关于积分的说明 15052597
捐赠科研通 4809594
什么是DOI,文献DOI怎么找? 2572392
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487373