已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Finding a needle in the haystack: ADME and pharmacokinetics/pharmacodynamics characterization and optimization toward orally available bifunctional protein degraders

干草堆 广告 药代动力学 药效学 药理学 医学 计算机科学 万维网
作者
Giulia Apprato,Giulia Caron,Gauri Deshmukh,Diego J. Jiménez,Robin Thomas Ulrich Haid,Andy Pike,Andreas Reichel,Caroline Rynn,Zhang Donglu,Matthias Wittwer
出处
期刊:Expert Opinion on Drug Discovery [Informa]
标识
DOI:10.1080/17460441.2025.2467195
摘要

Degraders are an increasingly important sub-modality of small molecules as illustrated by an ever-expanding number of publications and clinical candidate molecules in human trials. Nevertheless, their preclinical optimization of ADME and PK/PD properties has remained challenging. Significant research efforts are being directed to elucidate underlying principles and to derive rational optimization strategies. In this review the authors summarize current best practices in terms of in vitro assays and in vivo experiments. Furthermore, the authors collate and comment on the current understanding of optimal physicochemical characteristics and their impact on absorption, distribution, metabolism and excretion properties including the current knowledge of Drug-Drug interactions. Finally, the authors describe the Pharmacokinetic prediction and Pharmacokinetic/Pharmacodynamic -concepts unique to degraders and how to best implement these in research projects. Despite many recent advances in the field, continued research will further our understanding of rational design regarding degrader optimization. Machine-learning and computational approaches will become increasingly important once larger, more robust datasets become available. Furthermore, tissue-targeting approaches (particularly regarding the Central Nervous System will be increasingly studied to elucidate efficacious drug regimens that capitalize on the catalytic mode of action. Finally, additional specialized approaches (e.g. covalent degraders, LOVdegs) can enrich the field further and offer interesting alternative approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
boytoa完成签到 ,获得积分10
1秒前
香蕉觅云应助泡沫采纳,获得10
2秒前
3秒前
小马发布了新的文献求助10
4秒前
4秒前
ll完成签到,获得积分10
5秒前
xu完成签到,获得积分10
6秒前
7秒前
英姑应助火星上的大凄采纳,获得10
8秒前
研友_LJGoXn发布了新的文献求助10
9秒前
桐桐应助DrW1111采纳,获得10
9秒前
凶凶发布了新的文献求助10
9秒前
不语完成签到,获得积分10
10秒前
大模型应助ll采纳,获得10
11秒前
Lee完成签到,获得积分10
12秒前
cocolu应助4xi采纳,获得10
13秒前
15秒前
16秒前
田様应助Paddi采纳,获得10
16秒前
19秒前
19秒前
岳小龙完成签到 ,获得积分10
20秒前
LPL发布了新的文献求助20
20秒前
科研通AI5应助研友_LJGoXn采纳,获得10
23秒前
zxx发布了新的文献求助20
23秒前
24秒前
24秒前
太阳啊完成签到,获得积分10
24秒前
安济发布了新的文献求助10
25秒前
赵焱峥完成签到,获得积分10
25秒前
27秒前
共享精神应助甜美的朝雪采纳,获得10
27秒前
28秒前
太阳啊发布了新的文献求助10
29秒前
安济完成签到,获得积分10
29秒前
32秒前
阿QQQQ发布了新的文献求助10
33秒前
小蘑菇应助风中的夜梅采纳,获得10
33秒前
34秒前
34秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491087
求助须知:如何正确求助?哪些是违规求助? 3077779
关于积分的说明 9150236
捐赠科研通 2770180
什么是DOI,文献DOI怎么找? 1520177
邀请新用户注册赠送积分活动 704504
科研通“疑难数据库(出版商)”最低求助积分说明 702196