An extended model for crowd evacuation considering rescue behavior

行人 搜救 爬行 危害 计算机科学 模拟 紧急疏散 过程(计算) 运输工程 工程类 机器人 医学 人工智能 地理 化学 有机化学 解剖 操作系统 气象学
作者
Rongfu Yu,Qinghua Mao,Jian Lv
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:605: 127989-127989 被引量:8
标识
DOI:10.1016/j.physa.2022.127989
摘要

Most evacuation processes require the presence of people outside the scene, such as firefighters, to assist the trapped individuals to evacuate. This paper establishes an extended model for crowd evacuation considering rescue behavior. In the model, rescuers enter from the exit, approach the hazard source, and search for the injured individual. According to the physical condition of the injured pedestrian, there are two rescue methods: supporting or carrying the injured persons on their backs. Persons trapped in a room are evacuated by walking or crawling depending on their health condition, and healthy persons will rescue the surrounding crawling and evacuated individuals with a certain probability. Simulation results demonstrate that during the evacuation process considering rescue behavior: (1) The presence of rescuers improves evacuation efficiency. When the number of rescuers exceeds a certain threshold, the efficiency of evacuation will begin to decline. However, the evacuation efficiency with rescuers is still better than when there are no rescuers. (2) Increasing the possibility of pedestrian mutual assistance can improve evacuation efficiency. However, the effect of pedestrian mutual assistance probability on evacuation has a critical value. (3) The greater the distance from the hazard source to the exits, the smaller is the effect of the hazard source on evacuation. (4) when the total width of all exits is the same, the evacuation efficiency of two exits is higher than that of a single exit. The model and overall simulation results can help to develop different evacuation strategies and improve search and rescue plans according to specific scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
自由莺完成签到 ,获得积分10
1秒前
何lalala完成签到,获得积分20
1秒前
Drake发布了新的文献求助10
2秒前
SYLH应助读不完的文献啊采纳,获得10
2秒前
llllin完成签到 ,获得积分10
2秒前
3秒前
cc951229完成签到,获得积分10
3秒前
小王子发布了新的文献求助10
4秒前
皮皮灰熊完成签到,获得积分10
5秒前
余贵芹应助踏雪飞鸿采纳,获得10
5秒前
基金中中中完成签到,获得积分10
6秒前
华贞完成签到,获得积分10
6秒前
动漫大师发布了新的文献求助10
6秒前
YIlong发布了新的文献求助10
6秒前
7秒前
阿Q完成签到,获得积分10
8秒前
敏感板栗完成签到,获得积分10
8秒前
Shark完成签到,获得积分10
9秒前
杨杨完成签到,获得积分10
10秒前
科研小蔡发布了新的文献求助10
10秒前
芊芊完成签到 ,获得积分10
11秒前
魔幻晓山发布了新的文献求助10
11秒前
结实的山菡应助万幸鹿采纳,获得10
11秒前
13秒前
浩然完成签到,获得积分10
13秒前
多肉丸子完成签到,获得积分10
13秒前
yam001发布了新的文献求助10
13秒前
14秒前
14秒前
思源应助善良晓博采纳,获得10
15秒前
CipherSage应助小王子采纳,获得10
16秒前
当女遇到乔完成签到 ,获得积分10
17秒前
17秒前
19854173750发布了新的文献求助10
19秒前
流明明完成签到,获得积分10
19秒前
小小冰完成签到,获得积分10
19秒前
研友_VZG7GZ应助freedom313514采纳,获得10
21秒前
Wangyr发布了新的文献求助10
21秒前
hh完成签到,获得积分10
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10021089
捐赠科研通 2997457
什么是DOI,文献DOI怎么找? 1644633
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749703