Relationship of flow pattern, vibration, and noise in automobile refrigerant system and flow pattern identification based on convolutional neural network

物理 卷积神经网络 鉴定(生物学) 流量(数学) 噪音(视频) 制冷剂 振动 人工神经网络 声学 模式识别(心理学) 人工智能 机械 计算机科学 热力学 植物 气体压缩机 图像(数学) 生物
作者
Qin Zhao,Xin-Gang Zhu,Yan-Song He,Wenyu Jia,Zhifu Zhou
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (9)
标识
DOI:10.1063/5.0225959
摘要

In recent years, the flow-induced vibration and noise in automotive refrigerant system gradually become the main factor affecting driving comfort. However, the relationship of flow pattern, vibration, and noise is not clear, and pattern identification is not easy but necessary. In this paper, a series of experiments are conducted to investigate the relationship of flow pattern, flow-induce vibration, and noise near the thermal expansion valve in an automobile refrigerant system. The flow pattern, vibration, and noise are closely related to startup processes. Mist flow, which contains more mist two-phase mixture than transition flow and wispy-annular flow, leads to the largest amplitude of vibration and strong broadband hiss noise. Moreover, the increase in compressor speed promotes the pattern transition and the vibration amplitude in time domain but has no effect on the distribution of vibration peaks in frequency spectrum. Finally, a short-time Fourier transform and convolutional neural network combined method for flow pattern identification is developed based on the relationship of flow pattern and flow-induced noise. After using transfer learning and data augmentation, four trained network architectures show relatively high accuracy above 94% for test set. Among them, ResNet34 not only has the highest accuracy of 98.8% but also can recognize each type of flow pattern. The generalization of this method can help engineers to recognize flow patterns in air conditioning without flow visualization but only need to measure sound signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DaSheng发布了新的文献求助30
刚刚
墨染星辰完成签到,获得积分10
2秒前
3秒前
寻123发布了新的文献求助10
3秒前
3秒前
Dreames完成签到,获得积分10
4秒前
柠檬味电子对儿完成签到,获得积分10
4秒前
Lucas应助112我的采纳,获得10
5秒前
6秒前
7秒前
7秒前
希望天下0贩的0应助hiipaige采纳,获得30
8秒前
xiaoyao完成签到,获得积分10
9秒前
9秒前
老阳发布了新的文献求助10
10秒前
少年完成签到,获得积分10
10秒前
罗彩明发布了新的文献求助10
12秒前
单山蘸水完成签到,获得积分10
12秒前
orixero应助绿野金采纳,获得10
13秒前
菠萝冰棒发布了新的文献求助10
13秒前
13秒前
zain发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
15秒前
15秒前
DDG完成签到,获得积分20
15秒前
搜集达人应助熊二浪采纳,获得10
16秒前
hyh完成签到,获得积分10
17秒前
科研通AI5应助Phalloidin采纳,获得10
17秒前
18秒前
112我的发布了新的文献求助10
18秒前
李健应助科研通管家采纳,获得10
18秒前
打打应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
852应助科研通管家采纳,获得10
19秒前
今天开心应助科研通管家采纳,获得10
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737954
求助须知:如何正确求助?哪些是违规求助? 3281511
关于积分的说明 10025689
捐赠科研通 2998263
什么是DOI,文献DOI怎么找? 1645165
邀请新用户注册赠送积分活动 782636
科研通“疑难数据库(出版商)”最低求助积分说明 749882