UNet‐based multi‐organ segmentation in photon counting CT using virtual monoenergetic images

分割 计算机科学 人工智能 图像分割 计算机视觉 模式识别(心理学)
作者
Sumin Baek,Dong Hye Ye,Okkyun Lee
出处
期刊:Medical Physics [Wiley]
被引量:1
标识
DOI:10.1002/mp.17440
摘要

Abstract Background Multi‐organ segmentation aids in disease diagnosis, treatment, and radiotherapy. The recently emerged photon counting detector‐based CT (PCCT) provides spectral information of the organs and the background tissue and may improve segmentation performance. Purpose We propose UNet‐based multi‐organ segmentation in PCCT using virtual monoenergetic images (VMI) to exploit spectral information effectively. Methods The proposed method consists of the following steps: Noise reduction in bin‐wise images, image‐based material decomposition, generating VMIs, and deep learning‐based segmentation. VMIs are synthesized for various x‐ray energies using basis images. The UNet‐based networks (3D UNet, Swin UNETR) were used for segmentation, and dice similarity coefficients (DSC) and 3D visualization of the segmented result were evaluation indicators. We validated the proposed method for the liver, pancreas, and spleen segmentation using abdominal phantoms from 55 subjects for dual‐ and quad‐energy bins. We compared it to the conventional PCCT‐based segmentation, which uses only the (noise‐reduced) bin‐wise images. The experiments were conducted on two cases by adjusting the dose levels. Results The proposed method improved the training stability for most cases. With the proposed method, the average DSC for the three organs slightly increased from 0.933 to 0.95, and the standard deviation decreased from 0.066 to 0.047, for example, in the low dose case (using VMIs v.s. bin‐wise images from dual‐energy bins; 3D UNet). Conclusions The proposed method using VMIs improves training stability for multi‐organ segmentation in PCCT, particularly when the number of energy bins is small.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助zzx采纳,获得10
刚刚
思源应助乙酰胆碱采纳,获得10
刚刚
Christina完成签到,获得积分10
刚刚
1秒前
1秒前
123发布了新的文献求助10
1秒前
2秒前
杨老师发布了新的文献求助10
2秒前
2秒前
董是鑫发布了新的文献求助10
2秒前
华志文完成签到,获得积分10
2秒前
英姑应助喜悦的铭采纳,获得10
2秒前
3秒前
zz发布了新的文献求助10
4秒前
科研通AI6应助1+1采纳,获得10
5秒前
科研通AI6应助张耘硕采纳,获得10
5秒前
annaanna发布了新的文献求助10
5秒前
健康的妙菱完成签到,获得积分10
5秒前
6秒前
风中冰香应助nayi采纳,获得10
6秒前
bing发布了新的文献求助10
6秒前
7秒前
蝰蛇发布了新的文献求助10
7秒前
7秒前
黄大大发布了新的文献求助10
7秒前
Julie完成签到,获得积分10
7秒前
8秒前
研友_O8W2PZ发布了新的文献求助10
8秒前
8秒前
无情汉堡完成签到,获得积分10
8秒前
9秒前
顾威发布了新的文献求助10
9秒前
anki完成签到,获得积分20
9秒前
9秒前
9秒前
10秒前
Wrong发布了新的文献求助30
10秒前
Akim应助Bear采纳,获得10
10秒前
怡然的魔镜完成签到,获得积分10
10秒前
乙酰胆碱完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260333
求助须知:如何正确求助?哪些是违规求助? 4421812
关于积分的说明 13764321
捐赠科研通 4295995
什么是DOI,文献DOI怎么找? 2357141
邀请新用户注册赠送积分活动 1353475
关于科研通互助平台的介绍 1314745