UNet‐based multi‐organ segmentation in photon counting CT using virtual monoenergetic images

分割 计算机科学 人工智能 图像分割 计算机视觉 模式识别(心理学)
作者
Sumin Baek,Dong Hye Ye,Okkyun Lee
出处
期刊:Medical Physics [Wiley]
被引量:1
标识
DOI:10.1002/mp.17440
摘要

Abstract Background Multi‐organ segmentation aids in disease diagnosis, treatment, and radiotherapy. The recently emerged photon counting detector‐based CT (PCCT) provides spectral information of the organs and the background tissue and may improve segmentation performance. Purpose We propose UNet‐based multi‐organ segmentation in PCCT using virtual monoenergetic images (VMI) to exploit spectral information effectively. Methods The proposed method consists of the following steps: Noise reduction in bin‐wise images, image‐based material decomposition, generating VMIs, and deep learning‐based segmentation. VMIs are synthesized for various x‐ray energies using basis images. The UNet‐based networks (3D UNet, Swin UNETR) were used for segmentation, and dice similarity coefficients (DSC) and 3D visualization of the segmented result were evaluation indicators. We validated the proposed method for the liver, pancreas, and spleen segmentation using abdominal phantoms from 55 subjects for dual‐ and quad‐energy bins. We compared it to the conventional PCCT‐based segmentation, which uses only the (noise‐reduced) bin‐wise images. The experiments were conducted on two cases by adjusting the dose levels. Results The proposed method improved the training stability for most cases. With the proposed method, the average DSC for the three organs slightly increased from 0.933 to 0.95, and the standard deviation decreased from 0.066 to 0.047, for example, in the low dose case (using VMIs v.s. bin‐wise images from dual‐energy bins; 3D UNet). Conclusions The proposed method using VMIs improves training stability for multi‐organ segmentation in PCCT, particularly when the number of energy bins is small.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助诗谙采纳,获得10
1秒前
1秒前
2秒前
2秒前
3秒前
akafeng完成签到,获得积分10
4秒前
忐忑的鬼神完成签到,获得积分10
4秒前
7秒前
yoneyamai发布了新的文献求助10
7秒前
7秒前
7秒前
zhengzhao发布了新的文献求助10
7秒前
nicelily完成签到 ,获得积分10
8秒前
fengqinshang发布了新的文献求助10
8秒前
bin发布了新的文献求助10
8秒前
研友_VZG7GZ应助qindanyan采纳,获得10
9秒前
Santiago发布了新的文献求助10
9秒前
10秒前
yuyu发布了新的文献求助10
10秒前
10秒前
缪风华发布了新的文献求助30
11秒前
ohNANANA完成签到,获得积分10
11秒前
鱼鱼鱼完成签到,获得积分10
11秒前
11秒前
爱吃肥牛发布了新的文献求助10
12秒前
12秒前
1111jfdasfkdanf完成签到 ,获得积分10
14秒前
15秒前
15秒前
15秒前
15秒前
orixero应助怡然的煜城采纳,获得10
15秒前
今后应助元气少女岳云鹏采纳,获得10
15秒前
zhuangxiong完成签到,获得积分10
16秒前
zzz发布了新的文献求助10
16秒前
花与爱发布了新的文献求助10
17秒前
koipolaris完成签到,获得积分10
17秒前
牛马完成签到,获得积分10
17秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951583
求助须知:如何正确求助?哪些是违规求助? 3496980
关于积分的说明 11085596
捐赠科研通 3227413
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868495
科研通“疑难数据库(出版商)”最低求助积分说明 801154