UNet‐based multi‐organ segmentation in photon counting CT using virtual monoenergetic images

分割 计算机科学 人工智能 图像分割 计算机视觉 模式识别(心理学)
作者
Sumin Baek,Dong Hye Ye,Okkyun Lee
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17440
摘要

Abstract Background Multi‐organ segmentation aids in disease diagnosis, treatment, and radiotherapy. The recently emerged photon counting detector‐based CT (PCCT) provides spectral information of the organs and the background tissue and may improve segmentation performance. Purpose We propose UNet‐based multi‐organ segmentation in PCCT using virtual monoenergetic images (VMI) to exploit spectral information effectively. Methods The proposed method consists of the following steps: Noise reduction in bin‐wise images, image‐based material decomposition, generating VMIs, and deep learning‐based segmentation. VMIs are synthesized for various x‐ray energies using basis images. The UNet‐based networks (3D UNet, Swin UNETR) were used for segmentation, and dice similarity coefficients (DSC) and 3D visualization of the segmented result were evaluation indicators. We validated the proposed method for the liver, pancreas, and spleen segmentation using abdominal phantoms from 55 subjects for dual‐ and quad‐energy bins. We compared it to the conventional PCCT‐based segmentation, which uses only the (noise‐reduced) bin‐wise images. The experiments were conducted on two cases by adjusting the dose levels. Results The proposed method improved the training stability for most cases. With the proposed method, the average DSC for the three organs slightly increased from 0.933 to 0.95, and the standard deviation decreased from 0.066 to 0.047, for example, in the low dose case (using VMIs v.s. bin‐wise images from dual‐energy bins; 3D UNet). Conclusions The proposed method using VMIs improves training stability for multi‐organ segmentation in PCCT, particularly when the number of energy bins is small.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太拗口哟完成签到,获得积分10
1秒前
上官若男应助聪明纸飞机采纳,获得10
1秒前
冬虫夏草发布了新的文献求助10
1秒前
2秒前
风中听枫发布了新的文献求助10
2秒前
解安珊发布了新的文献求助10
2秒前
2秒前
NexusExplorer应助椿人采纳,获得10
3秒前
3秒前
4秒前
sean完成签到 ,获得积分10
5秒前
萧水白应助安静采纳,获得10
5秒前
野花做了玫瑰花的梦完成签到,获得积分10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
zjspidany应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
小黄同学爱学习完成签到 ,获得积分10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
orixero应助123采纳,获得10
7秒前
7秒前
薯条蘸酱油关注了科研通微信公众号
8秒前
充电宝应助椿人采纳,获得10
8秒前
妹妹发布了新的文献求助10
8秒前
9秒前
巴啦啦啦发布了新的文献求助10
9秒前
坎坎坷坷k发布了新的文献求助10
10秒前
10秒前
1097完成签到 ,获得积分10
11秒前
高强发布了新的文献求助10
13秒前
OK啊01发布了新的文献求助10
13秒前
17秒前
19秒前
19秒前
bkagyin应助椿人采纳,获得10
19秒前
香蕉觅云应助wang采纳,获得10
20秒前
Owen应助高强采纳,获得10
20秒前
走弓发布了新的文献求助10
21秒前
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248411
求助须知:如何正确求助?哪些是违规求助? 2891780
关于积分的说明 8268752
捐赠科研通 2559811
什么是DOI,文献DOI怎么找? 1388701
科研通“疑难数据库(出版商)”最低求助积分说明 650798
邀请新用户注册赠送积分活动 627775