UNet‐based multi‐organ segmentation in photon counting CT using virtual monoenergetic images

分割 计算机科学 人工智能 图像分割 计算机视觉 模式识别(心理学)
作者
Sumin Baek,Dong Hye Ye,Okkyun Lee
出处
期刊:Medical Physics [Wiley]
被引量:1
标识
DOI:10.1002/mp.17440
摘要

Abstract Background Multi‐organ segmentation aids in disease diagnosis, treatment, and radiotherapy. The recently emerged photon counting detector‐based CT (PCCT) provides spectral information of the organs and the background tissue and may improve segmentation performance. Purpose We propose UNet‐based multi‐organ segmentation in PCCT using virtual monoenergetic images (VMI) to exploit spectral information effectively. Methods The proposed method consists of the following steps: Noise reduction in bin‐wise images, image‐based material decomposition, generating VMIs, and deep learning‐based segmentation. VMIs are synthesized for various x‐ray energies using basis images. The UNet‐based networks (3D UNet, Swin UNETR) were used for segmentation, and dice similarity coefficients (DSC) and 3D visualization of the segmented result were evaluation indicators. We validated the proposed method for the liver, pancreas, and spleen segmentation using abdominal phantoms from 55 subjects for dual‐ and quad‐energy bins. We compared it to the conventional PCCT‐based segmentation, which uses only the (noise‐reduced) bin‐wise images. The experiments were conducted on two cases by adjusting the dose levels. Results The proposed method improved the training stability for most cases. With the proposed method, the average DSC for the three organs slightly increased from 0.933 to 0.95, and the standard deviation decreased from 0.066 to 0.047, for example, in the low dose case (using VMIs v.s. bin‐wise images from dual‐energy bins; 3D UNet). Conclusions The proposed method using VMIs improves training stability for multi‐organ segmentation in PCCT, particularly when the number of energy bins is small.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhu发布了新的文献求助10
刚刚
gustavo发布了新的文献求助10
1秒前
天天发布了新的文献求助10
1秒前
CKX完成签到,获得积分10
1秒前
1秒前
田様应助纯真的笑珊采纳,获得30
2秒前
11发布了新的文献求助10
2秒前
寒冷猫咪完成签到,获得积分20
2秒前
max关注了科研通微信公众号
4秒前
风起时发布了新的文献求助10
4秒前
5秒前
华仔应助文艺饼干采纳,获得10
5秒前
5秒前
快乐的小胖完成签到,获得积分10
6秒前
6秒前
8秒前
8秒前
Jasper应助谦让寄容采纳,获得10
9秒前
10秒前
江湖护卫舰应助ChaiHaobo采纳,获得10
10秒前
哈哈哈嗝发布了新的文献求助10
10秒前
李123完成签到,获得积分20
12秒前
tjr8910发布了新的文献求助10
13秒前
霍嘉文完成签到,获得积分10
13秒前
Et3rnity发布了新的文献求助10
14秒前
JamesPei应助纯真忆秋采纳,获得10
14秒前
九鹤发布了新的文献求助10
14秒前
15秒前
15秒前
17秒前
17秒前
max发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
zxy发布了新的文献求助10
19秒前
新县一小孩完成签到,获得积分10
19秒前
19秒前
20秒前
寒冷猫咪关注了科研通微信公众号
20秒前
京都梅片子完成签到 ,获得积分10
20秒前
冷静妙海完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941339
求助须知:如何正确求助?哪些是违规求助? 4207390
关于积分的说明 13077624
捐赠科研通 3986257
什么是DOI,文献DOI怎么找? 2182529
邀请新用户注册赠送积分活动 1198125
关于科研通互助平台的介绍 1110387