Metabolic profile predicts incident cancer: A large-scale population study in the UK Biobank

医学 危险系数 内科学 癌症 四分位间距 肝癌 肿瘤科 优势比 人口 癌症登记处 置信区间 环境卫生
作者
Muktar Beshir Ahmed,Ville‐Petteri Mäkinen,Amanda L. Lumsden,Terry Boyle,Anwar Mulugeta,Sang Lee,Ian Olver,Elina Hyppönen
出处
期刊:Metabolism-clinical and Experimental [Elsevier BV]
卷期号:138: 155342-155342 被引量:22
标识
DOI:10.1016/j.metabol.2022.155342
摘要

Background and aims Analyses to predict the risk of cancer typically focus on single biomarkers, which do not capture their complex interrelations. We hypothesized that the use of metabolic profiles may provide new insights into cancer prediction. Methods We used information from 290,888 UK Biobank participants aged 37 to 73 years at baseline. Metabolic subgroups were defined based on clustering of biochemical data using an artificial neural network approach and examined for their association with incident cancers identified through linkage to cancer registry. In addition, we evaluated associations between 38 individual biomarkers and cancer risk. Results In total, 21,973 individuals developed cancer during the follow-up (median 3.87 years, interquartile range [IQR] = 2.03–5.58). Compared to the metabolically favorable subgroup (IV), subgroup III (defined as "high BMI, C-reactive protein & cystatin C") was associated with a higher risk of obesity-related cancers (hazard ratio [HR] = 1.26, 95 % CI = 1.21 to 1.32) and hematologic-malignancies (e.g., lymphoid leukemia: HR = 1.83, 95%CI = 1.44 to 2.33). Subgroup II ("high triglycerides & liver enzymes") was strongly associated with liver cancer risk (HR = 5.70, 95%CI = 3.57 to 9.11). Analysis of individual biomarkers showed a positive association between testosterone and greater risks of hormone-sensitive cancers (HR per SD higher = 1.32, 95%CI = 1.23 to 1.44), and liver cancer (HR = 2.49, 95%CI =1.47 to 4.24). Many liver tests were individually associated with a greater risk of liver cancer with the strongest association observed for gamma-glutamyl transferase (HR = 2.40, 95%CI = 2.19 to 2.65). Conclusions Metabolic profile in middle-to-older age can predict cancer incidence, in particular risk of obesity-related cancer, hematologic malignancies, and liver cancer. Elevated values from liver tests are strong predictors for later risk of liver cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助marxing采纳,获得10
刚刚
刚刚
高处X发布了新的文献求助10
刚刚
科研通AI6应助小梁采纳,获得10
1秒前
吉良吉影发布了新的文献求助10
2秒前
2秒前
whiteandpink098完成签到,获得积分10
2秒前
3秒前
alyssa发布了新的文献求助10
4秒前
517完成签到 ,获得积分10
4秒前
FrozNineTivus发布了新的文献求助10
4秒前
wanci应助夜染采纳,获得10
4秒前
丘比特应助77在七月采纳,获得10
4秒前
5秒前
5秒前
lisaltp完成签到 ,获得积分10
5秒前
嗨喽完成签到,获得积分10
5秒前
煎蛋完成签到,获得积分10
6秒前
lalala应助张豪杰采纳,获得10
6秒前
小蘑菇应助柳叶小刀采纳,获得10
6秒前
7秒前
newman发布了新的文献求助10
7秒前
浮游应助jack采纳,获得10
7秒前
magic发布了新的文献求助10
8秒前
wansida完成签到,获得积分10
8秒前
Awei发布了新的文献求助10
8秒前
sssddd发布了新的文献求助10
8秒前
welldone发布了新的文献求助10
8秒前
糖豆子发布了新的文献求助10
8秒前
9秒前
10秒前
雾色笼晓树苍完成签到 ,获得积分10
10秒前
妙奇完成签到,获得积分10
11秒前
尊敬的雅青完成签到,获得积分10
11秒前
悦耳盼海完成签到,获得积分10
12秒前
hzy完成签到,获得积分10
12秒前
优秀剑愁完成签到 ,获得积分10
12秒前
执着的忆曼应助llllll采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5270881
求助须知:如何正确求助?哪些是违规求助? 4428854
关于积分的说明 13786375
捐赠科研通 4306781
什么是DOI,文献DOI怎么找? 2363258
邀请新用户注册赠送积分活动 1358936
关于科研通互助平台的介绍 1321862