Metabolic profile predicts incident cancer: A large-scale population study in the UK Biobank

医学 危险系数 内科学 癌症 四分位间距 肝癌 肿瘤科 优势比 人口 癌症登记处 置信区间 环境卫生
作者
Muktar Beshir Ahmed,Ville‐Petteri Mäkinen,Amanda L. Lumsden,Terry Boyle,Anwar Mulugeta,Sang Lee,Ian Olver,Elina Hyppönen
出处
期刊:Metabolism-clinical and Experimental [Elsevier]
卷期号:138: 155342-155342 被引量:22
标识
DOI:10.1016/j.metabol.2022.155342
摘要

Background and aims Analyses to predict the risk of cancer typically focus on single biomarkers, which do not capture their complex interrelations. We hypothesized that the use of metabolic profiles may provide new insights into cancer prediction. Methods We used information from 290,888 UK Biobank participants aged 37 to 73 years at baseline. Metabolic subgroups were defined based on clustering of biochemical data using an artificial neural network approach and examined for their association with incident cancers identified through linkage to cancer registry. In addition, we evaluated associations between 38 individual biomarkers and cancer risk. Results In total, 21,973 individuals developed cancer during the follow-up (median 3.87 years, interquartile range [IQR] = 2.03–5.58). Compared to the metabolically favorable subgroup (IV), subgroup III (defined as "high BMI, C-reactive protein & cystatin C") was associated with a higher risk of obesity-related cancers (hazard ratio [HR] = 1.26, 95 % CI = 1.21 to 1.32) and hematologic-malignancies (e.g., lymphoid leukemia: HR = 1.83, 95%CI = 1.44 to 2.33). Subgroup II ("high triglycerides & liver enzymes") was strongly associated with liver cancer risk (HR = 5.70, 95%CI = 3.57 to 9.11). Analysis of individual biomarkers showed a positive association between testosterone and greater risks of hormone-sensitive cancers (HR per SD higher = 1.32, 95%CI = 1.23 to 1.44), and liver cancer (HR = 2.49, 95%CI =1.47 to 4.24). Many liver tests were individually associated with a greater risk of liver cancer with the strongest association observed for gamma-glutamyl transferase (HR = 2.40, 95%CI = 2.19 to 2.65). Conclusions Metabolic profile in middle-to-older age can predict cancer incidence, in particular risk of obesity-related cancer, hematologic malignancies, and liver cancer. Elevated values from liver tests are strong predictors for later risk of liver cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱夜梦完成签到 ,获得积分10
刚刚
1秒前
科研通AI6应助康K采纳,获得10
1秒前
Scc完成签到 ,获得积分10
1秒前
李w发布了新的文献求助50
1秒前
可爱的函函应助啸西风采纳,获得10
2秒前
2秒前
2秒前
啦啦发布了新的文献求助10
2秒前
village完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
Andy发布了新的文献求助10
3秒前
善学以致用应助SeoHan采纳,获得10
3秒前
4秒前
4秒前
SY关注了科研通微信公众号
5秒前
lms0214完成签到,获得积分10
5秒前
yu发布了新的文献求助10
5秒前
5秒前
6秒前
深情安青应助fun采纳,获得10
6秒前
zjhzslq完成签到,获得积分10
6秒前
烧饼拌糖完成签到,获得积分10
6秒前
Johnny完成签到,获得积分10
7秒前
Miro发布了新的文献求助10
7秒前
顺心的傲松完成签到,获得积分10
7秒前
顾矜应助yu采纳,获得10
7秒前
JamesPei应助侯小懒同学采纳,获得10
8秒前
丁一发布了新的文献求助10
8秒前
8秒前
整齐半青完成签到 ,获得积分10
8秒前
Hello应助留胡子的代秋采纳,获得10
8秒前
9秒前
香蕉觅云应助wu采纳,获得10
9秒前
9秒前
苏暮雨发布了新的文献求助10
10秒前
10秒前
北北北发布了新的文献求助10
10秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442561
求助须知:如何正确求助?哪些是违规求助? 4552798
关于积分的说明 14238725
捐赠科研通 4474028
什么是DOI,文献DOI怎么找? 2451870
邀请新用户注册赠送积分活动 1442747
关于科研通互助平台的介绍 1418593