Multi-level feature fusion for fruit bearing branch keypoint detection

修剪 人工智能 果园 计算机科学 特征(语言学) 模式识别(心理学) 目标检测 方位(导航) 深度学习 农学 生物 语言学 哲学 园艺
作者
Qixin Sun,Xiujuan Chai,Zhikang Zeng,Guomin Zhou,Tan Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:191: 106479-106479 被引量:15
标识
DOI:10.1016/j.compag.2021.106479
摘要

Automated orchard operation has been a firm goal of fruit farmers for a long time. Deep learning-based approaches have been widely used to improve the performance of fruit detection, branch pruning, production estimating and other agricultural operations. This paper proposes a novel method to detect keypoint on the branch, which enables branch pruning during fruit picking. Specifically, a top-down framework for bearing branch keypoint detection is developed. First, a candidate area is generated according to the fruit-growing position and the fruit stem keypoint detection, which provides an attention region for further keypoint detection. Second, a multi-level feature fusion network which combines features in the same spatial sizes (intra-level) and from different spatial sizes (inter-level) is proposed to detect keypoint within the candidate area. The network can learn the spatial and semantic information and model the relationship among bearing branch keypoints. In addition, this paper constructs a citrus bearing branch dataset, which contributes to comprehensively evaluating the proposed method. Evaluation metrics on the dataset indicate the proposed method reaches an AP of 77.4% and an accuracy score of 84.7% with smaller model size and lower computing power consumption, which significantly outperforms several state-of-the-art keypoint detection methods. This study provides the possibility and foundation for performing automatic branch pruning during fruit harvesting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助一击必中采纳,获得10
刚刚
lwq发布了新的文献求助10
刚刚
1秒前
科研通AI6应助那新采纳,获得30
1秒前
小橘子发布了新的文献求助10
1秒前
研友_Lpawrn完成签到,获得积分10
1秒前
2秒前
Zhixiang发布了新的文献求助10
2秒前
MS903发布了新的文献求助10
2秒前
2秒前
DRXXX完成签到 ,获得积分10
2秒前
3秒前
情怀应助Antonio采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
张文静发布了新的文献求助10
4秒前
TJH完成签到,获得积分10
4秒前
4秒前
研友_ZzrWKZ发布了新的文献求助10
4秒前
5秒前
5秒前
nothing完成签到 ,获得积分10
6秒前
nianlu完成签到,获得积分10
6秒前
liuuuuuu完成签到 ,获得积分10
6秒前
linxi发布了新的文献求助10
6秒前
Akim应助瘦瘦的百褶裙采纳,获得10
6秒前
麦田里的守望者完成签到,获得积分10
6秒前
Wait发布了新的文献求助10
7秒前
lalala应助少艾采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
herococa应助迷路的指甲油采纳,获得10
8秒前
8秒前
8秒前
禾唔昂黄完成签到,获得积分10
8秒前
豆豆突发布了新的文献求助10
8秒前
小芒完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659360
求助须知:如何正确求助?哪些是违规求助? 4828643
关于积分的说明 15086659
捐赠科研通 4818058
什么是DOI,文献DOI怎么找? 2578481
邀请新用户注册赠送积分活动 1533096
关于科研通互助平台的介绍 1491770