Multi-level feature fusion for fruit bearing branch keypoint detection

修剪 人工智能 果园 计算机科学 特征(语言学) 模式识别(心理学) 目标检测 方位(导航) 深度学习 农学 语言学 生物 哲学 园艺
作者
Qixin Sun,Xiujuan Chai,Zhikang Zeng,Guomin Zhou,Tan Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:191: 106479-106479 被引量:15
标识
DOI:10.1016/j.compag.2021.106479
摘要

Automated orchard operation has been a firm goal of fruit farmers for a long time. Deep learning-based approaches have been widely used to improve the performance of fruit detection, branch pruning, production estimating and other agricultural operations. This paper proposes a novel method to detect keypoint on the branch, which enables branch pruning during fruit picking. Specifically, a top-down framework for bearing branch keypoint detection is developed. First, a candidate area is generated according to the fruit-growing position and the fruit stem keypoint detection, which provides an attention region for further keypoint detection. Second, a multi-level feature fusion network which combines features in the same spatial sizes (intra-level) and from different spatial sizes (inter-level) is proposed to detect keypoint within the candidate area. The network can learn the spatial and semantic information and model the relationship among bearing branch keypoints. In addition, this paper constructs a citrus bearing branch dataset, which contributes to comprehensively evaluating the proposed method. Evaluation metrics on the dataset indicate the proposed method reaches an AP of 77.4% and an accuracy score of 84.7% with smaller model size and lower computing power consumption, which significantly outperforms several state-of-the-art keypoint detection methods. This study provides the possibility and foundation for performing automatic branch pruning during fruit harvesting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山楂发布了新的文献求助10
3秒前
3秒前
科研达人发布了新的文献求助10
3秒前
隐形曼青应助CY采纳,获得10
4秒前
yxy完成签到,获得积分20
4秒前
5秒前
5秒前
烂漫的成风完成签到,获得积分10
6秒前
11完成签到 ,获得积分10
7秒前
山楂完成签到,获得积分10
7秒前
10秒前
Orange应助SUN采纳,获得10
10秒前
深情安青应助毛不二采纳,获得10
10秒前
勤劳的雁凡完成签到,获得积分10
11秒前
王星星发布了新的文献求助10
11秒前
yuan发布了新的文献求助20
11秒前
11秒前
旋转鸡爪子应助CCC采纳,获得10
11秒前
11秒前
尊敬夜南完成签到,获得积分10
12秒前
研友_VZG7GZ应助独特自行车采纳,获得10
12秒前
12秒前
舒心靖琪完成签到 ,获得积分10
13秒前
鸣笛应助zzuzjx采纳,获得30
14秒前
14秒前
典雅山槐完成签到,获得积分10
15秒前
oh应助yuqinghui98采纳,获得10
15秒前
15秒前
CY发布了新的文献求助10
15秒前
17秒前
zake发布了新的文献求助20
17秒前
兰乖乖完成签到,获得积分10
18秒前
一梦发布了新的文献求助10
18秒前
19秒前
SUN发布了新的文献求助10
19秒前
20秒前
Lucas应助zying采纳,获得10
22秒前
毛不二发布了新的文献求助10
23秒前
CipherSage应助一梦采纳,获得10
24秒前
SUN完成签到,获得积分10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998688
求助须知:如何正确求助?哪些是违规求助? 3538149
关于积分的说明 11273517
捐赠科研通 3277099
什么是DOI,文献DOI怎么找? 1807405
邀请新用户注册赠送积分活动 883855
科研通“疑难数据库(出版商)”最低求助积分说明 810070