Multi-level feature fusion for fruit bearing branch keypoint detection

修剪 人工智能 果园 计算机科学 特征(语言学) 模式识别(心理学) 目标检测 方位(导航) 深度学习 农学 生物 语言学 哲学 园艺
作者
Qixin Sun,Xiujuan Chai,Zhikang Zeng,Guomin Zhou,Tan Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:191: 106479-106479 被引量:15
标识
DOI:10.1016/j.compag.2021.106479
摘要

Automated orchard operation has been a firm goal of fruit farmers for a long time. Deep learning-based approaches have been widely used to improve the performance of fruit detection, branch pruning, production estimating and other agricultural operations. This paper proposes a novel method to detect keypoint on the branch, which enables branch pruning during fruit picking. Specifically, a top-down framework for bearing branch keypoint detection is developed. First, a candidate area is generated according to the fruit-growing position and the fruit stem keypoint detection, which provides an attention region for further keypoint detection. Second, a multi-level feature fusion network which combines features in the same spatial sizes (intra-level) and from different spatial sizes (inter-level) is proposed to detect keypoint within the candidate area. The network can learn the spatial and semantic information and model the relationship among bearing branch keypoints. In addition, this paper constructs a citrus bearing branch dataset, which contributes to comprehensively evaluating the proposed method. Evaluation metrics on the dataset indicate the proposed method reaches an AP of 77.4% and an accuracy score of 84.7% with smaller model size and lower computing power consumption, which significantly outperforms several state-of-the-art keypoint detection methods. This study provides the possibility and foundation for performing automatic branch pruning during fruit harvesting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cece完成签到,获得积分10
刚刚
123发布了新的文献求助10
1秒前
小巧凡霜完成签到,获得积分10
1秒前
爆米花应助想毕业了采纳,获得150
1秒前
1秒前
2秒前
monicaaaa完成签到,获得积分10
2秒前
2秒前
阳光的向雁完成签到,获得积分20
3秒前
结实的鹭洋完成签到,获得积分20
3秒前
dddd完成签到,获得积分10
3秒前
丑鱼丑鱼我爱你完成签到 ,获得积分10
4秒前
5秒前
6秒前
6秒前
Echo完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
斯文败类应助LIU采纳,获得10
7秒前
7秒前
村长发布了新的文献求助10
7秒前
7秒前
8秒前
田様应助沐雨篱边采纳,获得10
8秒前
Michael_Jiang发布了新的文献求助30
9秒前
俭朴晓凡完成签到,获得积分20
9秒前
爆米花应助丹丹丹采纳,获得10
9秒前
hanleiharry1发布了新的文献求助10
9秒前
wzh1745完成签到,获得积分10
12秒前
南溪完成签到,获得积分10
12秒前
噜噜发布了新的文献求助50
12秒前
麦克疯发布了新的文献求助10
13秒前
时尚海安发布了新的文献求助10
13秒前
Huang完成签到 ,获得积分0
13秒前
Aurora完成签到,获得积分20
15秒前
15秒前
Henagan完成签到 ,获得积分10
15秒前
15秒前
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656283
求助须知:如何正确求助?哪些是违规求助? 4802765
关于积分的说明 15075386
捐赠科研通 4814578
什么是DOI,文献DOI怎么找? 2575843
邀请新用户注册赠送积分活动 1531182
关于科研通互助平台的介绍 1489776