Multi-level feature fusion for fruit bearing branch keypoint detection

修剪 人工智能 果园 计算机科学 特征(语言学) 模式识别(心理学) 目标检测 方位(导航) 深度学习 农学 生物 语言学 哲学 园艺
作者
Qixin Sun,Xiujuan Chai,Zhikang Zeng,Guomin Zhou,Tan Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:191: 106479-106479 被引量:15
标识
DOI:10.1016/j.compag.2021.106479
摘要

Automated orchard operation has been a firm goal of fruit farmers for a long time. Deep learning-based approaches have been widely used to improve the performance of fruit detection, branch pruning, production estimating and other agricultural operations. This paper proposes a novel method to detect keypoint on the branch, which enables branch pruning during fruit picking. Specifically, a top-down framework for bearing branch keypoint detection is developed. First, a candidate area is generated according to the fruit-growing position and the fruit stem keypoint detection, which provides an attention region for further keypoint detection. Second, a multi-level feature fusion network which combines features in the same spatial sizes (intra-level) and from different spatial sizes (inter-level) is proposed to detect keypoint within the candidate area. The network can learn the spatial and semantic information and model the relationship among bearing branch keypoints. In addition, this paper constructs a citrus bearing branch dataset, which contributes to comprehensively evaluating the proposed method. Evaluation metrics on the dataset indicate the proposed method reaches an AP of 77.4% and an accuracy score of 84.7% with smaller model size and lower computing power consumption, which significantly outperforms several state-of-the-art keypoint detection methods. This study provides the possibility and foundation for performing automatic branch pruning during fruit harvesting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助库儿拉索采纳,获得10
刚刚
1秒前
苗条曲奇发布了新的文献求助10
2秒前
2秒前
Date完成签到,获得积分10
2秒前
3秒前
Kate应助张国栋采纳,获得10
4秒前
4秒前
Gnar发布了新的文献求助10
5秒前
6秒前
彩色凝竹完成签到,获得积分10
7秒前
7秒前
linchuyuan完成签到,获得积分10
8秒前
zzzzzzz发布了新的文献求助10
8秒前
li发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
mm关闭了mm文献求助
10秒前
11秒前
12秒前
打打应助跳跃保温杯采纳,获得10
13秒前
Maple完成签到,获得积分10
13秒前
思源应助静然采纳,获得10
15秒前
17秒前
专一的豌豆完成签到,获得积分20
17秒前
18秒前
ZNX发布了新的文献求助10
18秒前
18秒前
panzhongjie发布了新的文献求助10
19秒前
19秒前
22秒前
amberzyc应助朴素若灵采纳,获得10
23秒前
怕黑明雪发布了新的文献求助10
24秒前
李健应助小雅采纳,获得10
26秒前
潇洒的擎苍完成签到,获得积分10
26秒前
爆米花应助Xin采纳,获得10
26秒前
直率绮南发布了新的文献求助10
27秒前
yyy发布了新的文献求助20
29秒前
29秒前
搜集达人应助肩膀发芽采纳,获得10
29秒前
量子星尘发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633915
求助须知:如何正确求助?哪些是违规求助? 4729688
关于积分的说明 14986969
捐赠科研通 4791710
什么是DOI,文献DOI怎么找? 2559023
邀请新用户注册赠送积分活动 1519462
关于科研通互助平台的介绍 1479703