Multi-level feature fusion for fruit bearing branch keypoint detection

修剪 人工智能 果园 计算机科学 特征(语言学) 模式识别(心理学) 目标检测 方位(导航) 深度学习 农学 生物 语言学 哲学 园艺
作者
Qixin Sun,Xiujuan Chai,Zhikang Zeng,Guomin Zhou,Tan Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:191: 106479-106479 被引量:15
标识
DOI:10.1016/j.compag.2021.106479
摘要

Automated orchard operation has been a firm goal of fruit farmers for a long time. Deep learning-based approaches have been widely used to improve the performance of fruit detection, branch pruning, production estimating and other agricultural operations. This paper proposes a novel method to detect keypoint on the branch, which enables branch pruning during fruit picking. Specifically, a top-down framework for bearing branch keypoint detection is developed. First, a candidate area is generated according to the fruit-growing position and the fruit stem keypoint detection, which provides an attention region for further keypoint detection. Second, a multi-level feature fusion network which combines features in the same spatial sizes (intra-level) and from different spatial sizes (inter-level) is proposed to detect keypoint within the candidate area. The network can learn the spatial and semantic information and model the relationship among bearing branch keypoints. In addition, this paper constructs a citrus bearing branch dataset, which contributes to comprehensively evaluating the proposed method. Evaluation metrics on the dataset indicate the proposed method reaches an AP of 77.4% and an accuracy score of 84.7% with smaller model size and lower computing power consumption, which significantly outperforms several state-of-the-art keypoint detection methods. This study provides the possibility and foundation for performing automatic branch pruning during fruit harvesting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助小黑采纳,获得10
刚刚
1秒前
金鱼发布了新的文献求助10
1秒前
2秒前
猪猪侠应助正在加载中采纳,获得10
3秒前
3秒前
康明雪发布了新的文献求助10
3秒前
高高的起眸完成签到,获得积分10
3秒前
眼睛大的寄真完成签到,获得积分10
4秒前
宙船完成签到,获得积分20
4秒前
keyanniniz发布了新的文献求助10
5秒前
warithy完成签到,获得积分10
5秒前
lcpppppp发布了新的文献求助10
5秒前
今后应助白日做梦采纳,获得10
6秒前
6秒前
chd发布了新的文献求助30
7秒前
xinxin0902发布了新的文献求助10
7秒前
7秒前
AAAsun完成签到,获得积分10
7秒前
小蘑菇应助土豆丝上将采纳,获得30
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
轩儿轩完成签到 ,获得积分10
10秒前
友好的芷雪完成签到,获得积分10
10秒前
LL发布了新的文献求助10
10秒前
11秒前
YH完成签到,获得积分10
12秒前
SOBER发布了新的文献求助10
12秒前
13秒前
傲娇绿蕊发布了新的文献求助10
13秒前
顾矜应助Reborn采纳,获得10
13秒前
上官若男应助lcpppppp采纳,获得10
16秒前
核桃发布了新的文献求助10
16秒前
221发布了新的文献求助10
16秒前
失眠的冬易完成签到 ,获得积分10
16秒前
drew完成签到 ,获得积分10
17秒前
dreamode完成签到,获得积分10
17秒前
优美的梦玉完成签到,获得积分20
18秒前
星星完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666928
求助须知:如何正确求助?哪些是违规求助? 4883518
关于积分的说明 15118330
捐赠科研通 4825864
什么是DOI,文献DOI怎么找? 2583597
邀请新用户注册赠送积分活动 1537760
关于科研通互助平台的介绍 1495956