亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-level feature fusion for fruit bearing branch keypoint detection

修剪 人工智能 果园 计算机科学 特征(语言学) 模式识别(心理学) 目标检测 方位(导航) 深度学习 农学 语言学 生物 哲学 园艺
作者
Qixin Sun,Xiujuan Chai,Zhikang Zeng,Guomin Zhou,Tan Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:191: 106479-106479 被引量:15
标识
DOI:10.1016/j.compag.2021.106479
摘要

Automated orchard operation has been a firm goal of fruit farmers for a long time. Deep learning-based approaches have been widely used to improve the performance of fruit detection, branch pruning, production estimating and other agricultural operations. This paper proposes a novel method to detect keypoint on the branch, which enables branch pruning during fruit picking. Specifically, a top-down framework for bearing branch keypoint detection is developed. First, a candidate area is generated according to the fruit-growing position and the fruit stem keypoint detection, which provides an attention region for further keypoint detection. Second, a multi-level feature fusion network which combines features in the same spatial sizes (intra-level) and from different spatial sizes (inter-level) is proposed to detect keypoint within the candidate area. The network can learn the spatial and semantic information and model the relationship among bearing branch keypoints. In addition, this paper constructs a citrus bearing branch dataset, which contributes to comprehensively evaluating the proposed method. Evaluation metrics on the dataset indicate the proposed method reaches an AP of 77.4% and an accuracy score of 84.7% with smaller model size and lower computing power consumption, which significantly outperforms several state-of-the-art keypoint detection methods. This study provides the possibility and foundation for performing automatic branch pruning during fruit harvesting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晨阳完成签到,获得积分10
1秒前
Leon应助有人采纳,获得20
6秒前
慕青应助诺坎普的宠儿采纳,获得10
6秒前
有人重新开启了123文献应助
16秒前
独特的初彤完成签到 ,获得积分10
31秒前
流星完成签到,获得积分10
1分钟前
1分钟前
李健的小迷弟应助洛克采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
藤椒辣鱼应助科研通管家采纳,获得10
1分钟前
铭铭发布了新的文献求助10
1分钟前
铭铭完成签到,获得积分10
1分钟前
Benhnhk21发布了新的文献求助10
1分钟前
行走完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助Zy采纳,获得10
2分钟前
2分钟前
洛克发布了新的文献求助10
2分钟前
real完成签到,获得积分10
2分钟前
竹筏过海应助有人采纳,获得30
2分钟前
藤椒辣鱼应助科研通管家采纳,获得10
3分钟前
藤椒辣鱼应助科研通管家采纳,获得10
3分钟前
藤椒辣鱼应助科研通管家采纳,获得10
3分钟前
cqbrain123完成签到,获得积分10
3分钟前
月光入梦完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
龍一发布了新的文献求助20
3分钟前
请叫我风吹麦浪应助有人采纳,获得10
4分钟前
4分钟前
33完成签到,获得积分0
4分钟前
asdfqaz完成签到,获得积分10
4分钟前
科研通AI2S应助丰富寒风采纳,获得10
4分钟前
4分钟前
归尘发布了新的文献求助10
4分钟前
4分钟前
丰富寒风发布了新的文献求助10
4分钟前
酷炫的尔丝完成签到 ,获得积分10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466817
求助须知:如何正确求助?哪些是违规求助? 3059596
关于积分的说明 9067206
捐赠科研通 2750080
什么是DOI,文献DOI怎么找? 1508953
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896