Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis

医学 荟萃分析 医学影像学 乳腺癌 放射科 乳房成像 梅德林 医学物理学 光学相干层析成像 乳腺摄影术 诊断准确性 病理 内科学 癌症 政治学 法学
作者
Ravi Aggarwal,Viknesh Sounderajah,Guy Martin,Daniel Shu Wei Ting,Alan Karthikesalingam,Dominic King,Hutan Ashrafian,Ara Darzi
出处
期刊:npj digital medicine [Springer Nature]
卷期号:4 (1) 被引量:435
标识
DOI:10.1038/s41746-021-00438-z
摘要

Abstract Deep learning (DL) has the potential to transform medical diagnostics. However, the diagnostic accuracy of DL is uncertain. Our aim was to evaluate the diagnostic accuracy of DL algorithms to identify pathology in medical imaging. Searches were conducted in Medline and EMBASE up to January 2020. We identified 11,921 studies, of which 503 were included in the systematic review. Eighty-two studies in ophthalmology, 82 in breast disease and 115 in respiratory disease were included for meta-analysis. Two hundred twenty-four studies in other specialities were included for qualitative review. Peer-reviewed studies that reported on the diagnostic accuracy of DL algorithms to identify pathology using medical imaging were included. Primary outcomes were measures of diagnostic accuracy, study design and reporting standards in the literature. Estimates were pooled using random-effects meta-analysis. In ophthalmology, AUC’s ranged between 0.933 and 1 for diagnosing diabetic retinopathy, age-related macular degeneration and glaucoma on retinal fundus photographs and optical coherence tomography. In respiratory imaging, AUC’s ranged between 0.864 and 0.937 for diagnosing lung nodules or lung cancer on chest X-ray or CT scan. For breast imaging, AUC’s ranged between 0.868 and 0.909 for diagnosing breast cancer on mammogram, ultrasound, MRI and digital breast tomosynthesis. Heterogeneity was high between studies and extensive variation in methodology, terminology and outcome measures was noted. This can lead to an overestimation of the diagnostic accuracy of DL algorithms on medical imaging. There is an immediate need for the development of artificial intelligence-specific EQUATOR guidelines, particularly STARD, in order to provide guidance around key issues in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
兔农糖发布了新的文献求助10
2秒前
carbon-dots发布了新的文献求助10
3秒前
4秒前
科研通AI2S应助canvasss采纳,获得10
5秒前
6秒前
自信寄灵完成签到 ,获得积分10
7秒前
天天快乐应助微笑的冰烟采纳,获得10
7秒前
桐桐应助小艾采纳,获得10
7秒前
兰禅子发布了新的文献求助10
8秒前
8秒前
8秒前
苏阿糖完成签到,获得积分10
8秒前
9秒前
9秒前
研友_VZG7GZ应助兔农糖采纳,获得10
11秒前
柏不斜完成签到,获得积分20
12秒前
大壮应助xzy998采纳,获得10
12秒前
dm发布了新的文献求助10
13秒前
嘿嘿嘿完成签到,获得积分10
14秒前
完美世界应助整齐凌萱采纳,获得10
14秒前
柏不斜发布了新的文献求助10
15秒前
17秒前
17秒前
19秒前
20秒前
21秒前
21秒前
22秒前
嘿嘿嘿发布了新的文献求助10
22秒前
22秒前
23秒前
刘琪琪完成签到 ,获得积分10
23秒前
liyi发布了新的文献求助10
24秒前
QIQ发布了新的文献求助10
25秒前
25秒前
25秒前
26秒前
26秒前
整齐凌萱发布了新的文献求助10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138914
求助须知:如何正确求助?哪些是违规求助? 2789858
关于积分的说明 7792896
捐赠科研通 2446244
什么是DOI,文献DOI怎么找? 1301004
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079