Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis

医学 荟萃分析 医学影像学 乳腺癌 放射科 乳房成像 梅德林 医学物理学 光学相干层析成像 乳腺摄影术 诊断准确性 病理 内科学 癌症 政治学 法学
作者
Ravi Aggarwal,Viknesh Sounderajah,Guy Martin,Daniel Shu Wei Ting,Alan Karthikesalingam,Dominic King,Hutan Ashrafian,Ara Darzi
出处
期刊:npj digital medicine [Nature Portfolio]
卷期号:4 (1) 被引量:435
标识
DOI:10.1038/s41746-021-00438-z
摘要

Abstract Deep learning (DL) has the potential to transform medical diagnostics. However, the diagnostic accuracy of DL is uncertain. Our aim was to evaluate the diagnostic accuracy of DL algorithms to identify pathology in medical imaging. Searches were conducted in Medline and EMBASE up to January 2020. We identified 11,921 studies, of which 503 were included in the systematic review. Eighty-two studies in ophthalmology, 82 in breast disease and 115 in respiratory disease were included for meta-analysis. Two hundred twenty-four studies in other specialities were included for qualitative review. Peer-reviewed studies that reported on the diagnostic accuracy of DL algorithms to identify pathology using medical imaging were included. Primary outcomes were measures of diagnostic accuracy, study design and reporting standards in the literature. Estimates were pooled using random-effects meta-analysis. In ophthalmology, AUC’s ranged between 0.933 and 1 for diagnosing diabetic retinopathy, age-related macular degeneration and glaucoma on retinal fundus photographs and optical coherence tomography. In respiratory imaging, AUC’s ranged between 0.864 and 0.937 for diagnosing lung nodules or lung cancer on chest X-ray or CT scan. For breast imaging, AUC’s ranged between 0.868 and 0.909 for diagnosing breast cancer on mammogram, ultrasound, MRI and digital breast tomosynthesis. Heterogeneity was high between studies and extensive variation in methodology, terminology and outcome measures was noted. This can lead to an overestimation of the diagnostic accuracy of DL algorithms on medical imaging. There is an immediate need for the development of artificial intelligence-specific EQUATOR guidelines, particularly STARD, in order to provide guidance around key issues in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王359发布了新的文献求助10
1秒前
hammer发布了新的文献求助10
3秒前
4秒前
xinanan发布了新的文献求助10
4秒前
5秒前
王359完成签到,获得积分10
6秒前
7秒前
Tethys完成签到 ,获得积分10
7秒前
温暖念柏发布了新的文献求助30
8秒前
刀刀发布了新的文献求助10
8秒前
8秒前
研友_VZG7GZ应助hammer采纳,获得10
8秒前
yurunxintian完成签到,获得积分10
9秒前
12秒前
13秒前
脑洞疼应助JJ采纳,获得10
14秒前
zlqq发布了新的文献求助10
14秒前
14秒前
lmj717完成签到,获得积分10
15秒前
15秒前
刀刀完成签到,获得积分10
16秒前
万能图书馆应助韵寒禾香采纳,获得10
16秒前
Alex发布了新的文献求助200
17秒前
Raymond应助ying采纳,获得10
17秒前
深情安青应助ying采纳,获得10
17秒前
无奈的天玉完成签到,获得积分10
18秒前
含蓄妖丽发布了新的文献求助10
18秒前
可行完成签到,获得积分10
20秒前
洪山老狗完成签到,获得积分10
20秒前
prxMatcha发布了新的文献求助10
20秒前
五五完成签到,获得积分10
21秒前
21秒前
之组长了完成签到 ,获得积分10
23秒前
Somnolence咩发布了新的文献求助10
24秒前
26秒前
洪山老狗发布了新的文献求助10
26秒前
魁梧的鸿煊完成签到 ,获得积分10
27秒前
小二郎应助含蓄妖丽采纳,获得10
27秒前
DMMM完成签到,获得积分10
27秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965976
求助须知:如何正确求助?哪些是违规求助? 3511306
关于积分的说明 11157319
捐赠科研通 3245873
什么是DOI,文献DOI怎么找? 1793215
邀请新用户注册赠送积分活动 874245
科研通“疑难数据库(出版商)”最低求助积分说明 804286