Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis

医学 荟萃分析 医学影像学 系统回顾 梅德林 医学物理学 计算机科学 人工智能 病理 化学 生物化学
作者
Ravi Aggarwal,Viknesh Sounderajah,Guy Martin,Daniel Shu Wei Ting,Alan Karthikesalingam,Dominic King,Hutan Ashrafian,Ara Darzi
出处
期刊:npj digital medicine [Springer Nature]
卷期号:4 (1) 被引量:603
标识
DOI:10.1038/s41746-021-00438-z
摘要

Deep learning (DL) has the potential to transform medical diagnostics. However, the diagnostic accuracy of DL is uncertain. Our aim was to evaluate the diagnostic accuracy of DL algorithms to identify pathology in medical imaging. Searches were conducted in Medline and EMBASE up to January 2020. We identified 11,921 studies, of which 503 were included in the systematic review. Eighty-two studies in ophthalmology, 82 in breast disease and 115 in respiratory disease were included for meta-analysis. Two hundred twenty-four studies in other specialities were included for qualitative review. Peer-reviewed studies that reported on the diagnostic accuracy of DL algorithms to identify pathology using medical imaging were included. Primary outcomes were measures of diagnostic accuracy, study design and reporting standards in the literature. Estimates were pooled using random-effects meta-analysis. In ophthalmology, AUC's ranged between 0.933 and 1 for diagnosing diabetic retinopathy, age-related macular degeneration and glaucoma on retinal fundus photographs and optical coherence tomography. In respiratory imaging, AUC's ranged between 0.864 and 0.937 for diagnosing lung nodules or lung cancer on chest X-ray or CT scan. For breast imaging, AUC's ranged between 0.868 and 0.909 for diagnosing breast cancer on mammogram, ultrasound, MRI and digital breast tomosynthesis. Heterogeneity was high between studies and extensive variation in methodology, terminology and outcome measures was noted. This can lead to an overestimation of the diagnostic accuracy of DL algorithms on medical imaging. There is an immediate need for the development of artificial intelligence-specific EQUATOR guidelines, particularly STARD, in order to provide guidance around key issues in this field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PengM发布了新的文献求助10
刚刚
1秒前
1秒前
爆米花应助kaka采纳,获得10
2秒前
汤号号完成签到,获得积分10
3秒前
小鸣完成签到 ,获得积分10
4秒前
领导范儿应助梁锦澎采纳,获得10
4秒前
打打应助毛毛采纳,获得10
4秒前
5秒前
uuu完成签到,获得积分10
5秒前
7秒前
汤号号发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
深情安青应助彭于晏采纳,获得10
9秒前
10秒前
10秒前
Owen应助西西歪采纳,获得10
11秒前
11秒前
一安完成签到,获得积分10
11秒前
QT_429发布了新的文献求助10
12秒前
12秒前
13秒前
橙子1234关注了科研通微信公众号
13秒前
13秒前
14秒前
Olivia完成签到 ,获得积分10
15秒前
乐观静曼完成签到,获得积分10
16秒前
曲奇吐司发布了新的文献求助10
17秒前
2534165发布了新的文献求助30
17秒前
深海蓝鱼发布了新的文献求助10
17秒前
李沁宣完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
英姑应助高高的绮梅采纳,获得10
18秒前
18秒前
19秒前
aikeyan发布了新的文献求助10
20秒前
hx完成签到 ,获得积分10
21秒前
21秒前
22秒前
科研通AI2S应助how采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762881
求助须知:如何正确求助?哪些是违规求助? 5537393
关于积分的说明 15403910
捐赠科研通 4898922
什么是DOI,文献DOI怎么找? 2635190
邀请新用户注册赠送积分活动 1583298
关于科研通互助平台的介绍 1538405