Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis

医学 荟萃分析 医学影像学 系统回顾 梅德林 医学物理学 计算机科学 人工智能 病理 化学 生物化学
作者
Ravi Aggarwal,Viknesh Sounderajah,Guy Martin,Daniel Shu Wei Ting,Alan Karthikesalingam,Dominic King,Hutan Ashrafian,Ara Darzi
出处
期刊:npj digital medicine [Nature Portfolio]
卷期号:4 (1) 被引量:603
标识
DOI:10.1038/s41746-021-00438-z
摘要

Deep learning (DL) has the potential to transform medical diagnostics. However, the diagnostic accuracy of DL is uncertain. Our aim was to evaluate the diagnostic accuracy of DL algorithms to identify pathology in medical imaging. Searches were conducted in Medline and EMBASE up to January 2020. We identified 11,921 studies, of which 503 were included in the systematic review. Eighty-two studies in ophthalmology, 82 in breast disease and 115 in respiratory disease were included for meta-analysis. Two hundred twenty-four studies in other specialities were included for qualitative review. Peer-reviewed studies that reported on the diagnostic accuracy of DL algorithms to identify pathology using medical imaging were included. Primary outcomes were measures of diagnostic accuracy, study design and reporting standards in the literature. Estimates were pooled using random-effects meta-analysis. In ophthalmology, AUC's ranged between 0.933 and 1 for diagnosing diabetic retinopathy, age-related macular degeneration and glaucoma on retinal fundus photographs and optical coherence tomography. In respiratory imaging, AUC's ranged between 0.864 and 0.937 for diagnosing lung nodules or lung cancer on chest X-ray or CT scan. For breast imaging, AUC's ranged between 0.868 and 0.909 for diagnosing breast cancer on mammogram, ultrasound, MRI and digital breast tomosynthesis. Heterogeneity was high between studies and extensive variation in methodology, terminology and outcome measures was noted. This can lead to an overestimation of the diagnostic accuracy of DL algorithms on medical imaging. There is an immediate need for the development of artificial intelligence-specific EQUATOR guidelines, particularly STARD, in order to provide guidance around key issues in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不以完成签到,获得积分10
刚刚
WN完成签到,获得积分10
1秒前
lieomey完成签到,获得积分10
1秒前
weiwei完成签到 ,获得积分10
1秒前
Will完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
昏睡的蟠桃应助想不想采纳,获得10
2秒前
gong9456完成签到,获得积分10
2秒前
star应助scufgy采纳,获得10
2秒前
ash发布了新的文献求助10
2秒前
3秒前
gaoqg完成签到,获得积分10
3秒前
科研通AI6应助白雪阁采纳,获得10
3秒前
充电宝应助正方形圆采纳,获得10
3秒前
Jaylou完成签到,获得积分0
3秒前
DDAIDN完成签到,获得积分10
3秒前
xukaixuan001完成签到,获得积分10
3秒前
wey完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
Bellona完成签到,获得积分20
5秒前
clock完成签到 ,获得积分10
5秒前
HOKUTO发布了新的文献求助10
6秒前
zuoyanwin完成签到,获得积分10
6秒前
glacier发布了新的文献求助10
6秒前
虚心岂愈完成签到 ,获得积分10
6秒前
seven_yao完成签到,获得积分10
6秒前
成就的迎夏完成签到,获得积分10
6秒前
深情安青应助Lengbo采纳,获得10
6秒前
莲枳榴莲发布了新的文献求助10
7秒前
阳光的皮皮虾完成签到,获得积分10
8秒前
体贴的叛逆者完成签到,获得积分10
9秒前
修仙中应助smh采纳,获得10
10秒前
拼搏的问玉完成签到,获得积分10
10秒前
希望天下0贩的0应助lanmin采纳,获得10
10秒前
小可乐完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256668
求助须知:如何正确求助?哪些是违规求助? 4418830
关于积分的说明 13753577
捐赠科研通 4292020
什么是DOI,文献DOI怎么找? 2355264
邀请新用户注册赠送积分活动 1351704
关于科研通互助平台的介绍 1312465