Machine Learning Algorithms for Chromophoric Dissolved Organic Matter (CDOM) Estimation Based on Landsat 8 Images

有色溶解有机物 溶解有机碳 环境科学 遥感 反向传播 计算机科学 生物地球化学循环 人工神经网络 算法 人工智能 地质学 化学 海洋学 营养物 有机化学 环境化学 浮游植物
作者
Xiao Sun,Yunlin Zhang,Yibo Zhang,Kun� Shi,Yongqiang Zhou,Na Li
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (18): 3560-3560 被引量:25
标识
DOI:10.3390/rs13183560
摘要

Chromophoric dissolved organic matter (CDOM) is crucial in the biogeochemical cycle and carbon cycle of aquatic environments. However, in inland waters, remotely sensed estimates of CDOM remain challenging due to the low optical signal of CDOM and complex optical conditions. Therefore, developing efficient, practical and robust models to estimate CDOM absorption coefficient in inland waters is essential for successful water environment monitoring and management. We examined and improved different machine learning algorithms using extensive CDOM measurements and Landsat 8 images covering different trophic states to develop the robust CDOM estimation model. The algorithms were evaluated via 111 Landsat 8 images and 1708 field measurements covering CDOM light absorption coefficient a(254) from 2.64 to 34.04 m−1. Overall, the four machine learning algorithms achieved more than 70% accuracy for CDOM absorption coefficient estimation. Based on model training, validation and the application on Landsat 8 OLI images, we found that the Gaussian process regression (GPR) had higher stability and estimation accuracy (R2 = 0.74, mean relative error (MRE) = 22.2%) than the other models. The estimation accuracy and MRE were R2 = 0.75 and MRE = 22.5% for backpropagation (BP) neural network, R2 = 0.71 and MRE = 24.4% for random forest regression (RFR) and R2 = 0.71 and MRE = 24.4% for support vector regression (SVR). In contrast, the best three empirical models had estimation accuracies of R2 less than 0.56. The model accuracies applied to Landsat images of Lake Qiandaohu (oligo-mesotrophic state) were better than those of Lake Taihu (eutrophic state) because of the more complex optical conditions in eutrophic lakes. Therefore, machine learning algorithms have great potential for CDOM monitoring in inland waters based on large datasets. Our study demonstrates that machine learning algorithms are available to map CDOM spatial-temporal patterns in inland waters.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多情的山水完成签到 ,获得积分10
1秒前
...完成签到 ,获得积分10
2秒前
zheng完成签到 ,获得积分10
7秒前
韭菜盒子完成签到,获得积分20
8秒前
CCC完成签到 ,获得积分10
8秒前
666星爷完成签到,获得积分10
8秒前
科研通AI2S应助Justtry采纳,获得10
11秒前
嘻嘻哈哈啊完成签到 ,获得积分10
14秒前
Annora完成签到,获得积分10
17秒前
鱼雷完成签到,获得积分10
19秒前
韭菜完成签到,获得积分20
19秒前
夜雨诗意完成签到,获得积分10
20秒前
wxnice完成签到,获得积分10
21秒前
我是谁完成签到,获得积分10
22秒前
研友_Z1eDgZ完成签到,获得积分10
25秒前
季风气候完成签到 ,获得积分10
25秒前
cdsd完成签到,获得积分10
26秒前
煜琪完成签到 ,获得积分10
26秒前
27秒前
跳跃完成签到,获得积分10
27秒前
1111完成签到,获得积分10
27秒前
28秒前
www完成签到 ,获得积分10
31秒前
11111发布了新的文献求助10
32秒前
韭黄完成签到,获得积分20
35秒前
CDI和LIB完成签到,获得积分10
38秒前
123456完成签到 ,获得积分10
38秒前
Keyuuu30完成签到,获得积分0
39秒前
11111完成签到,获得积分10
42秒前
Justtry完成签到,获得积分10
43秒前
lululululululu完成签到 ,获得积分10
44秒前
lightman完成签到,获得积分10
48秒前
灿烂完成签到,获得积分10
49秒前
guishouyu完成签到,获得积分10
52秒前
ccx完成签到,获得积分10
53秒前
xiaoguai完成签到 ,获得积分10
53秒前
EricSai完成签到,获得积分10
54秒前
柳博超完成签到,获得积分10
54秒前
马美丽完成签到 ,获得积分10
54秒前
chenkj完成签到,获得积分10
54秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388579
求助须知:如何正确求助?哪些是违规求助? 3000831
关于积分的说明 8793953
捐赠科研通 2687098
什么是DOI,文献DOI怎么找? 1472001
科研通“疑难数据库(出版商)”最低求助积分说明 680683
邀请新用户注册赠送积分活动 673326