彩色多普勒
医学
二尖瓣反流
分级(工程)
卷积神经网络
人工智能
放射科
算法
内科学
计算机科学
超声科
工程类
土木工程
作者
Qinglu Zhang,Yuanqin Liu,Jia Mi,Xing Wang,Xia Liu,Fang Zhao,Cuihuan Xie,Pei‐Pei Cui,Xiangwei Zhu
摘要
Accurate assessment of mitral regurgitation (MR) severity is critical in clinical diagnosis and treatment. No single echocardiographic method has been recommended for MR quantification thus far. We sought to define the feasibility and accuracy of the mask regions with a convolutional neural network (Mask R-CNN) algorithm in the automatic qualitative evaluation of MR using color Doppler echocardiography images. The authors collected 1132 cases of MR from hospital A and 295 cases of MR from hospital B and divided them into the following four types according to the 2017 American Society of Echocardiography (ASE) guidelines: grade I (mild), grade II (moderate), grade III (moderate), and grade IV (severe). Both grade II and grade III are moderate. After image marking with the LabelMe software, a method using the Mask R-CNN algorithm based on deep learning (DL) was used to evaluate MR severity. We used the data from hospital A to build the artificial intelligence (AI) model and conduct internal verification, and we used the data from hospital B for external verification. According to severity, the accuracy of classification was 0.90, 0.89, and 0.91 for mild, moderate, and severe MR, respectively. The Macro F1 and Micro F1 coefficients were 0.91 and 0.92, respectively. According to grading, the accuracy of classification was 0.90, 0.87, 0.81, and 0.91 for grade I, grade II, grade III, and grade IV, respectively. The Macro F1 and Micro F1 coefficients were 0.89 and 0.89, respectively. Automatic assessment of MR severity is feasible with the Mask R-CNN algorithm and color Doppler electrocardiography images collected in accordance with the 2017 ASE guidelines, and the model demonstrates reasonable performance and provides reliable qualitative results for MR severity.
科研通智能强力驱动
Strongly Powered by AbleSci AI