Soft Optoelectronic Sensors with Deep Learning for Gesture Recognition

手势 计算机科学 手势识别 过程(计算) 人工智能 人机交互 深度学习 虚拟现实 材料科学 计算机视觉 操作系统
作者
Lei Zhao,Bei Wu,Yao Niu,Sheng‐ke Zhu,Ye Chen,Huanyang Chen,Jinhui Chen
出处
期刊:Advanced materials and technologies [Wiley]
卷期号:7 (11) 被引量:8
标识
DOI:10.1002/admt.202101698
摘要

Abstract With the rapid development of deep learning and computing power, human–computer interactions, and interfaces are attracting attentions in industrial and academic research. Flexible human–computer interaction can greatly improve productivity and enable robots to work in extreme environments that humans cannot tolerate. The research of gesture recognition is emerging and provides a new way of studying the human–computer interactions. However, compared with the entire human body, human hands are dexterous organs with more complex and flexible joints, which makes hand gesture recognition a challenging problem. Here, a robust and cost‐effective gesture recognition system is reported through the soft optoelectronic sensors. An array of polymer‐encapsulated U‐shaped microfiber (UMF) attached to a glove is fabricated for sensitive finger motion detection. The anisotropic strain response of UMF is measured with a sensitivity of 15.98 (2.20) in the x ‐direction ( y ‐direction). A deep learning network (VGGNet) is developed to process the optical signals for analyzing and classifying hand gestures. The experiments show that VGGNet has high recognition accuracy of 99.2% for the test datasets with ten classified gestures. This work provides a potential optical interface in studying gesture recognition and biomechanical signatures, which can also be applied in virtual reality systems and interactive game platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助byyyak采纳,获得10
1秒前
传奇3应助xia夏采纳,获得10
2秒前
乐乐应助IVAN采纳,获得10
3秒前
彭于晏应助juziyaya采纳,获得200
3秒前
5秒前
6秒前
深情安青应助不想做实验采纳,获得10
7秒前
SYLH应助zz采纳,获得10
7秒前
实验好难应助guoguoguo采纳,获得10
9秒前
huangbing123发布了新的文献求助10
10秒前
10秒前
10秒前
壮观小笼包关注了科研通微信公众号
10秒前
11秒前
11秒前
12秒前
薛华倩发布了新的文献求助10
12秒前
14秒前
方方发布了新的文献求助10
14秒前
15秒前
xiao发布了新的文献求助10
15秒前
16秒前
徐老师完成签到,获得积分10
16秒前
852应助无聊的凡阳采纳,获得10
16秒前
学术蝗虫完成签到,获得积分10
16秒前
lxr完成签到,获得积分10
18秒前
Owen应助大狒狒采纳,获得10
18秒前
甜美慕梅完成签到,获得积分10
18秒前
小曦发布了新的文献求助10
18秒前
雨林霖完成签到,获得积分10
19秒前
瘦瘦的烤鸡完成签到,获得积分10
19秒前
20秒前
yy发布了新的文献求助10
21秒前
xia夏发布了新的文献求助10
21秒前
求知若渴的小王完成签到,获得积分10
22秒前
22秒前
夏目完成签到,获得积分10
22秒前
酷波er应助lxr采纳,获得10
22秒前
24秒前
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736207
求助须知:如何正确求助?哪些是违规求助? 3279988
关于积分的说明 10017941
捐赠科研通 2996592
什么是DOI,文献DOI怎么找? 1644198
邀请新用户注册赠送积分活动 781831
科研通“疑难数据库(出版商)”最低求助积分说明 749491