Joint image denoising with gradient direction and edge-preserving regularization

正规化(语言学) 人工智能 图像复原 降噪 计算机视觉 图像渐变 图像(数学) 计算机科学 方向导数 数学 图像处理 模式识别(心理学) 边缘检测 数学分析
作者
Pengliang Li,Junli Liang,Miaohua Zhang,Wen Fan,Guoyang Yu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:125: 108506-108506 被引量:7
标识
DOI:10.1016/j.patcog.2021.108506
摘要

• A new gradient-direction-based method is proposed to avoid the denoised edges to be blurred especially when the edges of the guidance image are weak or inexistent. • The reconstructed gradient vectors are used for the purpose of making the guidance image deeply participate in the model optimization process. • A specifically designed optimization procedure is proposed to solve these nonconvex subproblems. • A new regularization term is formulated to weaken the effects of the unreliable prior information from the guidance image. • Experimental results on public datasets and from benchmark methods consistently demonstrate the effectiveness of the proposed method both visually and quantitatively. Joint image denoising algorithms use the structures of the guidance image as a prior to restore the noisy target image. While the provided guidance images are helpful to improve the denoising performance, the denoised edges are most likely to be blurred especially when the edges of the guidance image are weak or inexistent. To address this weakness, this paper proposes a new gradient-direction-based joint image denoising method in which the absolute cosine value of the angle between two gradient vectors of the guidance image and those of the image to recover is employed as the parallel measurement to ensure that the gradient directions of the denoised image are approximately the same as or opposite to those of the guidance image. Besides, a new edge-preserving regularization term is developed to alleviate the effects of the unreliable prior information from guidance image. To simplify the resultant complex nonconvex and nonlinear fractional model, the logarithm function is employed to convert the multiplication operation into addition operation. Then, we construct the surrogate function for the logarithmic term of l 2 -norm, and separate the variables to transform the objective function into convex one with high numerical stability while retaining high efficiency. Finally, the optimal solutions can be obtained by directly minimizing the convex functions. Experimental results on public datasets and from nine benchmark methods consistently demonstrate the effectiveness of the proposed method both visually and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小陈完成签到,获得积分10
5秒前
时冬冬应助科研通管家采纳,获得20
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
Accepted应助科研通管家采纳,获得10
5秒前
Accepted应助科研通管家采纳,获得10
5秒前
干净的时光应助刘老哥6采纳,获得20
6秒前
chenzq完成签到,获得积分10
6秒前
背后的果汁完成签到,获得积分10
8秒前
深呼吸完成签到,获得积分20
11秒前
顾矜应助brainxue采纳,获得10
11秒前
li完成签到,获得积分20
12秒前
14秒前
雨相所至应助smile采纳,获得10
16秒前
Hyc28441711完成签到,获得积分10
16秒前
深呼吸发布了新的文献求助10
17秒前
刘老哥6完成签到,获得积分20
17秒前
贝利亚完成签到,获得积分10
18秒前
本草石之寒温完成签到 ,获得积分10
24秒前
june1111完成签到,获得积分10
24秒前
25秒前
蛋妮完成签到 ,获得积分10
26秒前
livra1058完成签到,获得积分10
26秒前
乐观银耳汤完成签到,获得积分10
28秒前
guolina完成签到 ,获得积分10
29秒前
Jiang发布了新的文献求助30
30秒前
xiaobai完成签到,获得积分10
33秒前
苹果含烟完成签到,获得积分10
34秒前
叶夜南完成签到 ,获得积分10
38秒前
ChenLi完成签到,获得积分10
38秒前
危机的芸完成签到 ,获得积分10
42秒前
zhuzhu完成签到,获得积分10
43秒前
回忆完成签到,获得积分10
44秒前
ZYN发布了新的文献求助10
46秒前
QAQSS完成签到 ,获得积分10
50秒前
你真是那个啊完成签到,获得积分10
51秒前
小可爱完成签到,获得积分10
52秒前
可爱的函函应助乐观静蕾采纳,获得10
58秒前
lala完成签到,获得积分20
59秒前
文静小熊猫完成签到,获得积分10
59秒前
呆呆的猕猴桃完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162519
求助须知:如何正确求助?哪些是违规求助? 2813358
关于积分的说明 7900144
捐赠科研通 2472938
什么是DOI,文献DOI怎么找? 1316594
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175