An efficient critical path based method for permutation flow shop scheduling problem

关键路径法 数学优化 模拟退火 流水车间调度 计算机科学 路径(计算) 算法 作业车间调度 数学 工程类 地铁列车时刻表 操作系统 程序设计语言 系统工程
作者
Yang Li,Xinyu Li,Liang Gao,Ling Fu,Cuiyu Wang
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:63: 344-353 被引量:16
标识
DOI:10.1016/j.jmsy.2022.04.005
摘要

The permutation flow shop scheduling problem (PFSP) is one of the most important and typical scheduling types in the mass customization production and is also a well-known NP-hard problem. However, most of the reported algorithms lack the theoretical guidance to achieve the good accuracy and efficiency. To solve this problem, this paper proposes an efficient search method based on critical path with three theorems for the PFSP. Firstly, the concept of critical path and key points are defined according to the characteristics of the PFSP. On this basis, three theorems with the corresponding proofs are presented. Then, combined with above three theorems, a new neighborhood search method for the PFSP is developed. In each neighborhood search, only the first and last jobs in the processing sequence and the first job of each machine on the critical path need to be computed. No matter how large the scale of the problem is, this method only needs to search at most (2 m+2) times to find the optimal neighborhood solution (m is the number of machines). Finally, the new neighborhood search method is combined with an improved simulated annealing algorithm to solve the PFSP. To verify the performance of the proposed algorithm, this paper implement a set of comparative experiments with the-state-of-art methods on the part of the TA benchmark. By the proposed method, some significant improvements are obtained according to the experimental results. Meanwhile, under the same algorithm framework, the proposed method can reduce the 35.2% average computation time. Especially, the best-known upper bound of TA116 is updated from 26477 to 26469 by the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小谷完成签到 ,获得积分10
刚刚
在远方发布了新的文献求助10
1秒前
大可发布了新的文献求助10
2秒前
4秒前
wanci应助ok采纳,获得10
6秒前
飞龙在天发布了新的文献求助30
6秒前
小程同学发布了新的文献求助10
8秒前
有魅力的怜雪完成签到 ,获得积分10
9秒前
科目三应助迷人的高烽采纳,获得10
14秒前
Czy完成签到,获得积分10
16秒前
小柴乖乖完成签到,获得积分10
16秒前
18秒前
orixero应助大可采纳,获得10
19秒前
852应助大可采纳,获得10
19秒前
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
祁依欧欧应助科研通管家采纳,获得10
20秒前
上官若男应助科研通管家采纳,获得10
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
20秒前
22秒前
小玉完成签到,获得积分10
22秒前
ok发布了新的文献求助10
25秒前
cocolu应助dablack采纳,获得200
26秒前
在远方发布了新的文献求助10
26秒前
zzz发布了新的文献求助10
29秒前
卡恩完成签到 ,获得积分10
29秒前
suofzcn完成签到,获得积分10
30秒前
31秒前
醉乀心发布了新的文献求助10
32秒前
dablack给dablack的求助进行了留言
35秒前
36秒前
suofzcn发布了新的文献求助10
36秒前
差点成帅哥关注了科研通微信公众号
36秒前
白小白完成签到,获得积分10
37秒前
小葫芦完成签到,获得积分10
39秒前
41秒前
花生发布了新的文献求助10
41秒前
42秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343625
求助须知:如何正确求助?哪些是违规求助? 2970630
关于积分的说明 8644716
捐赠科研通 2650766
什么是DOI,文献DOI怎么找? 1451444
科研通“疑难数据库(出版商)”最低求助积分说明 672137
邀请新用户注册赠送积分活动 661569