GMSS: Graph-Based Multi-Task Self-Supervised Learning for EEG Emotion Recognition

过度拟合 拼图 多任务学习 人工智能 任务(项目管理) 脑电图 计算机科学 一般化 特征学习 机器学习 模式识别(心理学) 图形 情绪识别 语音识别 人工神经网络 心理学 工程类 数学 数学分析 教育学 系统工程 理论计算机科学 精神科
作者
Yang Li,J.J. Chen,Fu Li,Boxun Fu,Hao Wu,Youshuo Ji,Yijin Zhou,Yi Niu,Guangming Shi,Wenming Zheng
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (3): 2512-2525 被引量:89
标识
DOI:10.1109/taffc.2022.3170428
摘要

Previous electroencephalogram (EEG) emotion recognition relies on single-task learning, which may lead to overfitting and learned emotion features lacking generalization. In this paper, a graph-based multi-task self-supervised learning model (GMSS) for EEG emotion recognition is proposed. GMSS has the ability to learn more general representations by integrating multiple self-supervised tasks, including spatial and frequency jigsaw puzzle tasks, and contrastive learning tasks. By learning from multiple tasks simultaneously, GMSS can find a representation that captures all of the tasks thereby decreasing the chance of overfitting on the original task, i.e., emotion recognition task. In particular, the spatial jigsaw puzzle task aims to capture the intrinsic spatial relationships of different brain regions. Considering the importance of frequency information in EEG emotional signals, the goal of the frequency jigsaw puzzle task is to explore the crucial frequency bands for EEG emotion recognition. To further regularize the learned features and encourage the network to learn inherent representations, contrastive learning task is adopted in this work by mapping the transformed data into a common feature space. The performance of the proposed GMSS is compared with several popular unsupervised and supervised methods. Experiments on SEED, SEED-IV, and MPED datasets show that the proposed model has remarkable advantages in learning more discriminative and general features for EEG emotional signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助研友_rLmNXn采纳,获得10
1秒前
孙燕应助忧郁的听露采纳,获得10
2秒前
田様应助morena采纳,获得10
2秒前
3秒前
ppp发布了新的文献求助10
5秒前
5秒前
8秒前
9秒前
顾矜应助Muhammad采纳,获得10
9秒前
9秒前
捌贰陆柒完成签到 ,获得积分10
10秒前
Aaron完成签到 ,获得积分10
10秒前
隐形曼青应助jingxian采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
12秒前
今后应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
smart完成签到,获得积分10
13秒前
13秒前
研友_VZG7GZ应助科研通管家采纳,获得30
13秒前
草上飞发布了新的文献求助10
13秒前
柯一一应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
如意枫叶发布了新的文献求助10
14秒前
14秒前
耐凡不哭发布了新的文献求助80
15秒前
李健应助jundading采纳,获得10
15秒前
Rony发布了新的文献求助10
15秒前
15秒前
18秒前
科目三应助白桦林泪采纳,获得10
19秒前
天天快乐应助张文静采纳,获得10
19秒前
19秒前
ppp完成签到,获得积分10
19秒前
21秒前
小苏苏发布了新的文献求助10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989660
求助须知:如何正确求助?哪些是违规求助? 3531826
关于积分的说明 11255082
捐赠科研通 3270447
什么是DOI,文献DOI怎么找? 1804981
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176