Digital prediction model of temperature-induced deflection for cable-stayed bridges based on learning of response-only data

偏转(物理) 人工神经网络 非线性系统 计算机科学 结构工程
作者
Manya Wang,Youliang Ding,Hanwei Zhao
出处
期刊:Journal of Civil Structural Health Monitoring [Springer Nature]
标识
DOI:10.1007/s13349-022-00570-8
摘要

Time-varying behavior of deflection field under effects of non-uniform temperature field is a focus of structural health monitoring for long-span cable-stayed bridges. In this paper, LSTM neural network is used to obtain the timing characteristics of deflection field and explore the correlation between each measuring point by using memory characteristics of neural unit, so as to predict deflection field under multiple working conditions. By using LSTM neural network, it can realize response-only deflection prediction. At the same time, LSTM neural network can also be applicalbe to solve the problem of recovery and regression of deflection field when temperature data is missing. Through the case study, we can find that the following: (1) the deflection field shows good linear correlation at each measuring point within main span, while the deflection between main span and side span has obvious nonlinear distribution characteristics; (2) compared with SVM method, the LSTM model can obtain better prediction results, and it can realize response-only deflection field prediction; (3) through the improved prediction model, historical deflection data of measured points are introduced to improve prediction accuracy. Because historical data are introduced to improve the input data set, the improved model can be used to predict the temperature-induced deflection in whole range of bridge under various working conditions; (4) the size of input data set can affect prediction model accuracy. The prediction effect of 1 min input data set is better than that of 10-min and 1-h input data set, which can effectively reduce the offset items of predicted data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
再睡十分钟完成签到,获得积分10
1秒前
赘婿应助坚强的严青采纳,获得10
2秒前
米夏完成签到 ,获得积分10
2秒前
耍酷的梦桃完成签到,获得积分10
3秒前
嘻嘻完成签到,获得积分10
3秒前
小鑫鑫1027完成签到,获得积分10
3秒前
万能图书馆应助化工人采纳,获得10
4秒前
5秒前
Hey发布了新的文献求助10
5秒前
6秒前
7秒前
lpx43完成签到,获得积分10
8秒前
李超完成签到,获得积分10
8秒前
altango完成签到,获得积分10
9秒前
mei发布了新的文献求助10
9秒前
12秒前
12秒前
小雨点完成签到 ,获得积分10
12秒前
励志梦完成签到,获得积分10
13秒前
清爽的南霜完成签到 ,获得积分10
13秒前
苹果骑士完成签到,获得积分10
15秒前
体贴的乐松完成签到,获得积分10
15秒前
卿莞尔完成签到 ,获得积分10
15秒前
狄剑通关注了科研通微信公众号
16秒前
化工人发布了新的文献求助10
16秒前
Jerry完成签到,获得积分10
16秒前
东晓完成签到,获得积分10
17秒前
tzy6665完成签到,获得积分10
18秒前
JunJun完成签到 ,获得积分10
18秒前
19秒前
哈哈哈完成签到 ,获得积分10
19秒前
Joy发布了新的文献求助10
21秒前
SciGPT应助化工人采纳,获得10
21秒前
ygh完成签到,获得积分10
22秒前
小垃圾完成签到,获得积分10
23秒前
A12138完成签到 ,获得积分10
23秒前
huhuan完成签到,获得积分10
24秒前
krovanh完成签到,获得积分10
24秒前
细心宛凝完成签到,获得积分10
24秒前
老王爱学习完成签到,获得积分10
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798221
关于积分的说明 7827159
捐赠科研通 2454808
什么是DOI,文献DOI怎么找? 1306480
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565