Digital prediction model of temperature-induced deflection for cable-stayed bridges based on learning of response-only data

偏转(物理) 人工神经网络 非线性系统 计算机科学 结构工程
作者
Manya Wang,Youliang Ding,Hanwei Zhao
出处
期刊:Journal of Civil Structural Health Monitoring [Springer Science+Business Media]
标识
DOI:10.1007/s13349-022-00570-8
摘要

Time-varying behavior of deflection field under effects of non-uniform temperature field is a focus of structural health monitoring for long-span cable-stayed bridges. In this paper, LSTM neural network is used to obtain the timing characteristics of deflection field and explore the correlation between each measuring point by using memory characteristics of neural unit, so as to predict deflection field under multiple working conditions. By using LSTM neural network, it can realize response-only deflection prediction. At the same time, LSTM neural network can also be applicalbe to solve the problem of recovery and regression of deflection field when temperature data is missing. Through the case study, we can find that the following: (1) the deflection field shows good linear correlation at each measuring point within main span, while the deflection between main span and side span has obvious nonlinear distribution characteristics; (2) compared with SVM method, the LSTM model can obtain better prediction results, and it can realize response-only deflection field prediction; (3) through the improved prediction model, historical deflection data of measured points are introduced to improve prediction accuracy. Because historical data are introduced to improve the input data set, the improved model can be used to predict the temperature-induced deflection in whole range of bridge under various working conditions; (4) the size of input data set can affect prediction model accuracy. The prediction effect of 1 min input data set is better than that of 10-min and 1-h input data set, which can effectively reduce the offset items of predicted data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刚刚好发布了新的文献求助10
2秒前
misong完成签到,获得积分10
3秒前
雾散完成签到,获得积分10
4秒前
iNk应助Youtenter采纳,获得10
6秒前
王星星发布了新的文献求助10
6秒前
废寝忘食完成签到,获得积分10
7秒前
医路向前完成签到 ,获得积分10
7秒前
8秒前
Akim应助sctaaa采纳,获得10
8秒前
YzBqh完成签到,获得积分10
9秒前
fuxiaobao发布了新的文献求助10
11秒前
刚刚好完成签到,获得积分10
11秒前
牛奶牛奶完成签到,获得积分10
11秒前
研友_VZG7GZ应助li采纳,获得10
13秒前
神经娃完成签到,获得积分10
13秒前
贾莆完成签到,获得积分10
13秒前
14秒前
li发布了新的文献求助10
14秒前
15秒前
慕青应助纯白采纳,获得10
17秒前
Akim应助王星星采纳,获得10
17秒前
医路向前发布了新的文献求助10
19秒前
sctaaa发布了新的文献求助10
20秒前
濮阳映萱完成签到,获得积分20
21秒前
22秒前
灵巧新瑶发布了新的文献求助10
22秒前
粉色小妖精完成签到,获得积分10
24秒前
思源应助麟钰采纳,获得10
25秒前
地震学牛马完成签到,获得积分10
25秒前
冷静乌龟发布了新的文献求助10
26秒前
wow发布了新的文献求助10
26秒前
优美霸完成签到,获得积分10
26秒前
27秒前
Asheldon完成签到,获得积分10
28秒前
sctaaa完成签到,获得积分10
29秒前
wss完成签到,获得积分10
30秒前
Dellamoffy完成签到,获得积分10
30秒前
李健应助小小采纳,获得10
30秒前
科研通AI2S应助liuzengzhang666采纳,获得10
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997769
求助须知:如何正确求助?哪些是违规求助? 3537294
关于积分的说明 11271231
捐赠科研通 3276455
什么是DOI,文献DOI怎么找? 1807040
邀请新用户注册赠送积分活动 883639
科研通“疑难数据库(出版商)”最低求助积分说明 809982