已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Digital prediction model of temperature-induced deflection for cable-stayed bridges based on learning of response-only data

偏转(物理) 人工神经网络 非线性系统 计算机科学 结构工程
作者
Manya Wang,Youliang Ding,Hanwei Zhao
出处
期刊:Journal of Civil Structural Health Monitoring [Springer Nature]
标识
DOI:10.1007/s13349-022-00570-8
摘要

Time-varying behavior of deflection field under effects of non-uniform temperature field is a focus of structural health monitoring for long-span cable-stayed bridges. In this paper, LSTM neural network is used to obtain the timing characteristics of deflection field and explore the correlation between each measuring point by using memory characteristics of neural unit, so as to predict deflection field under multiple working conditions. By using LSTM neural network, it can realize response-only deflection prediction. At the same time, LSTM neural network can also be applicalbe to solve the problem of recovery and regression of deflection field when temperature data is missing. Through the case study, we can find that the following: (1) the deflection field shows good linear correlation at each measuring point within main span, while the deflection between main span and side span has obvious nonlinear distribution characteristics; (2) compared with SVM method, the LSTM model can obtain better prediction results, and it can realize response-only deflection field prediction; (3) through the improved prediction model, historical deflection data of measured points are introduced to improve prediction accuracy. Because historical data are introduced to improve the input data set, the improved model can be used to predict the temperature-induced deflection in whole range of bridge under various working conditions; (4) the size of input data set can affect prediction model accuracy. The prediction effect of 1 min input data set is better than that of 10-min and 1-h input data set, which can effectively reduce the offset items of predicted data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助辰枫吖采纳,获得10
刚刚
满意的颦完成签到,获得积分10
1秒前
雪白砖家完成签到 ,获得积分10
4秒前
uu完成签到 ,获得积分10
4秒前
langzfs完成签到,获得积分10
11秒前
ccm应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
12秒前
tuanheqi应助科研通管家采纳,获得50
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
12秒前
上善若水呦完成签到 ,获得积分10
16秒前
打打应助幻心采纳,获得10
16秒前
CipherSage应助墨苒采纳,获得10
21秒前
24秒前
幻心完成签到,获得积分20
24秒前
冯宇完成签到,获得积分10
26秒前
幻心发布了新的文献求助10
28秒前
风清扬应助安详冰夏采纳,获得30
31秒前
31秒前
不知名完成签到,获得积分10
35秒前
如意竺完成签到,获得积分10
41秒前
chen完成签到,获得积分10
43秒前
等月闲发布了新的文献求助10
45秒前
zyro完成签到,获得积分10
46秒前
安详冰夏完成签到,获得积分20
46秒前
47秒前
秋作发布了新的文献求助10
48秒前
大大大陌白完成签到,获得积分10
49秒前
bkagyin应助zyro采纳,获得10
50秒前
mmyhn应助zweide采纳,获得20
50秒前
HONG完成签到 ,获得积分10
51秒前
54秒前
Auraro发布了新的文献求助10
54秒前
mmyhn应助清新的怜雪采纳,获得20
58秒前
墨苒发布了新的文献求助10
59秒前
1分钟前
千倾完成签到 ,获得积分0
1分钟前
yy发布了新的文献求助10
1分钟前
墨苒完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5528663
求助须知:如何正确求助?哪些是违规求助? 4618176
关于积分的说明 14562062
捐赠科研通 4556973
什么是DOI,文献DOI怎么找? 2497281
邀请新用户注册赠送积分活动 1477530
关于科研通互助平台的介绍 1448838