分割
计算机科学
人工智能
植被(病理学)
生物群落
图像分割
模式识别(心理学)
计算机视觉
高分辨率
任务(项目管理)
航空影像
遥感
图像(数学)
地理
工程类
生态系统
生物
病理
医学
系统工程
生态学
作者
Keiller Nogueira,Jefersson A. dos Santos,Leonardo Farage Cancian,Bruno Borges,Thiago Sanna Freire Silva,Leonor Patrícia Cerdeira Morellato,Ricardo da S. Torres
标识
DOI:10.1109/igarss.2017.8127824
摘要
Vegetation segmentation in high resolution images acquired by unmanned aerial vehicles (UAVs) is a challenging task that requires methods capable of learning high-level features while dealing with fine-grained data. In this paper, we propose a combination of different methods of semantic segmentation based on Convolutional Networks (ConvNets) to obtain highly accurate segmentation of individuals of different vegetation species. The objective is not only to learn specific and adaptable features depending on the data, but also to learn and combine appropriate classifiers. We conducted a systematic evaluation using a high-resolution UAV-based image dataset related to a campo rupestre vegetation in the Brazilian Cerrado biome. Experimental results show that the ensemble technique overcomes all segmentation strategies.
科研通智能强力驱动
Strongly Powered by AbleSci AI