Optimal Scheduling of Urban Transit Systems Using Genetic Algorithms

数学优化 计算机科学 调度(生产过程) 护士排班问题 作业车间调度 最优化问题 编码(社会科学) 非线性规划 非线性系统 算法 数学 流水车间调度 地铁列车时刻表 统计 物理 量子力学 操作系统
作者
Partha Chakroborty,Kalyanmoy Deb,P. S. Subrahmanyam
出处
期刊:Journal of transportation engineering [American Society of Civil Engineers]
卷期号:121 (6): 544-553 被引量:122
标识
DOI:10.1061/(asce)0733-947x(1995)121:6(544)
摘要

Scheduling of urban transit network can be formulated as an optimization problem of minimizing the overall transfer time (TT) of transferring passengers and initial waiting time (IWT) of the passengers waiting to board a bus/train at their point of origin. In this paper, a mathematical programming (MP) formulation of the scheduling problem at one transfer station is presented. The MP problem is large and nonlinear in terms of the decision variables, thereby making it difficult for classical programming techniques to solve the problem. We apply genetic algorithms (GAs)—search and optimization methods based on natural genetics and selection—to solve the scheduling problem. The main advantage of using GAs is that the problem can be reformulated in a manner that is computationally more efficient than the original problem. Further, the coding aspect of GAs inherently takes care of most of the constraints associated with the scheduling problem. Results from a number of test problems demonstrate that the GAs are able to find optimal schedules with a reasonable computational resource. The paper concludes by presenting a number of extensions to the present problem and discusses plausible solution techniques using GAs. The success of GAs in this paper suggests their efficacy as a solution tool for similar optimization problems arising in transportation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小陈要努力完成签到,获得积分10
1秒前
1秒前
123发布了新的文献求助10
1秒前
梅思双发布了新的文献求助10
1秒前
Jasper应助bujiachong采纳,获得10
2秒前
天真笑白发布了新的文献求助10
3秒前
荆扉应助xiao采纳,获得20
3秒前
贺贺完成签到,获得积分10
3秒前
3秒前
大袁发布了新的文献求助10
3秒前
3秒前
高高的善斓完成签到 ,获得积分10
3秒前
4秒前
4秒前
流川发布了新的文献求助10
5秒前
xsf发布了新的文献求助10
5秒前
siqi完成签到 ,获得积分10
5秒前
支安白发布了新的文献求助10
6秒前
Jia应助自觉松鼠采纳,获得10
7秒前
7秒前
7秒前
splaker7完成签到,获得积分10
7秒前
guo应助居崽采纳,获得20
7秒前
7秒前
123完成签到,获得积分20
8秒前
搞怪的紫易完成签到,获得积分10
8秒前
我是老大应助温柔的墙采纳,获得10
8秒前
NexusExplorer应助小陈要努力采纳,获得10
8秒前
小马甲应助YJ采纳,获得10
9秒前
9秒前
丁峰完成签到,获得积分10
9秒前
9秒前
10秒前
贝肯尼发布了新的文献求助10
10秒前
CodeCraft应助小子弹采纳,获得10
10秒前
10秒前
冷傲的荧荧完成签到,获得积分10
11秒前
Keycy发布了新的文献求助40
11秒前
12秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Refractive Index Metrology of Optical Polymers 400
Progress in the development of NiO/MgO solid solution catalysts: A review 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3442812
求助须知:如何正确求助?哪些是违规求助? 3039049
关于积分的说明 8974956
捐赠科研通 2727539
什么是DOI,文献DOI怎么找? 1496035
科研通“疑难数据库(出版商)”最低求助积分说明 691392
邀请新用户注册赠送积分活动 688601