The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data.

药代动力学 分配量 加药 药理学 体内 体外 化学 分布(数学) 基于生理学的药代动力学模型 新陈代谢 医学 药效学 代谢物 药品 药物代谢
作者
R S Obach,J G Baxter,T E Liston,B M Silber,B C Jones,F MacIntyre,D J Rance,P Wastall
出处
期刊:Journal of Pharmacology and Experimental Therapeutics [American Society for Pharmacology and Experimental Therapeutics]
卷期号:283 (1): 46-58 被引量:689
链接
标识
摘要

We describe a comprehensive retrospective analysis in which the abilities of several methods by which human pharmacokinetic parameters are predicted from preclinical pharmacokinetic data and/or in vitro metabolism data were assessed. The prediction methods examined included both methods from the scientific literature as well as some described in this report for the first time. Four methods were examined for their ability to predict human volume of distribution. Three were highly predictive, yielding, on average, predictions that were within 60% to 90% of actual values. Twelve methods were assessed for their utility in predicting clearance. The most successful allometric scaling method yielded clearance predictions that were, on average, within 80% of actual values. The best methods in which in vitro metabolism data from human liver microsomes were scaled to in vivo clearance values yielded predicted clearance values that were, on average, within 70% to 80% of actual values. Human t1/2 was predicted by combining predictions of human volume of distribution and clearance. The best t1/2 prediction methods successfully assigned compounds to appropriate dosing regimen categories (e.g., once daily, twice daily and so forth) 70% to 80% of the time. In addition, correlations between human t1/2 and t1/2 values from preclinical species were also generally successful (72-87%) when used to predict human dosing regimens. In summary, this retrospective analysis has identified several approaches by which human pharmacokinetic data can be predicted from preclinical data. Such approaches should find utility in the drug discovery and development processes in the identification and selection of compounds that will possess appropriate pharmacokinetic characteristics in humans for progression to clinical trials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ysy完成签到,获得积分10
刚刚
氮化碳发布了新的文献求助10
1秒前
王山完成签到,获得积分10
2秒前
方断秋完成签到,获得积分10
2秒前
现实的航空完成签到,获得积分10
2秒前
皓轩完成签到 ,获得积分10
2秒前
还不如瞎写完成签到,获得积分10
2秒前
逐梦小绳完成签到,获得积分10
2秒前
Duan完成签到 ,获得积分10
3秒前
DZQ完成签到,获得积分10
3秒前
Roger完成签到,获得积分10
3秒前
4秒前
zyf完成签到,获得积分10
5秒前
吉吉国王完成签到,获得积分10
5秒前
6秒前
123完成签到,获得积分10
6秒前
chen完成签到,获得积分10
6秒前
落后访风完成签到,获得积分10
6秒前
光崽是谁完成签到,获得积分10
6秒前
剁手党完成签到,获得积分10
7秒前
liyf发布了新的文献求助10
8秒前
科研通AI5应助海涛采纳,获得10
8秒前
Dobby完成签到,获得积分10
8秒前
调皮帆布鞋完成签到,获得积分10
8秒前
子卿完成签到,获得积分0
8秒前
三木子应助舒心渊思采纳,获得10
9秒前
土壤情缘完成签到,获得积分10
10秒前
白告关注了科研通微信公众号
10秒前
萧然完成签到,获得积分10
11秒前
自信的高山完成签到,获得积分10
12秒前
Charles完成签到,获得积分10
14秒前
小彤完成签到 ,获得积分10
14秒前
sevenlalala完成签到,获得积分10
15秒前
淡然的新烟完成签到 ,获得积分10
15秒前
Jan完成签到,获得积分10
16秒前
打打应助phenory采纳,获得10
16秒前
酷酷阑香完成签到,获得积分10
16秒前
子虚一尘完成签到,获得积分10
17秒前
Linsey完成签到,获得积分10
17秒前
别致的苹果派完成签到,获得积分10
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3742459
求助须知:如何正确求助?哪些是违规求助? 3285014
关于积分的说明 10042803
捐赠科研通 3001641
什么是DOI,文献DOI怎么找? 1647494
邀请新用户注册赠送积分活动 784239
科研通“疑难数据库(出版商)”最低求助积分说明 750676