纳米复合材料
材料科学
热重分析
差示扫描量热法
聚丙烯
热稳定性
氢氧化物
极限抗拉强度
马来酸酐
动态力学分析
热分解
抗弯强度
化学工程
高分子化学
复合材料
聚合物
化学
共聚物
有机化学
工程类
物理
热力学
作者
Kaberi Kakati,G. Pugazhenthi,Parameswar Krishnan Iyer
标识
DOI:10.1080/00914037.2011.610060
摘要
This work addresses the effect of organomodified layer double hydroxide (OLDH) on the properties of PP/LDH nanocomposites prepared by melt intercalation method using a single screw extruder with maleic anhydride grafted polypropylene (PP-g-MA) as a compatibilizer. For this, Ni-Al LDH was first prepared by the co-precipitation method at constant pH using their nitrate salts. The above synthesized pristine LDH was organically modified using sodium dodecyl sulphate (SDS) by the regeneration method. The structural and thermal properties of LDH and PP nanocomposites were performed by X-ray diffraction (XRD), FTIR spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The influence of LDH loading on the mechanical and thermal properties of the nanocomposite was also investigated. The XRD results confirmed the formation of exfoliated PP/LDH nanocomposites. PP/LDH nanocomposites exhibited enhanced thermal stability relative to the pure PP. When 10% weight loss was selected as a point of comparison, the decomposition temperature of PP/LDH (5 wt%) nanocomposite was 15.3°C higher than that of pure PP. The DSC result indicated an increase in crystallization and melting temperature of the PP/LDH nanocomposites compared to pure PP. Overall, the mechanical properties of the PP/LDH nanocomposites increased with an increase in the LDH content. The maximum improvement of tensile strength, Young's modulus, flexural strength, and flexural modulus for the PP/LDH nanocomposite was found to be 11, 22.5, 28, and 22%, respectively, over neat PP. For comparison purposes, a nanocomposite with 5 wt% modified bentonite (PP/B5) was also prepared under the same operating condition and there was no significant improvement in mechanical properties (tensile strength and modulus).
科研通智能强力驱动
Strongly Powered by AbleSci AI