去模糊
计算机科学
光学(聚焦)
串联(数学)
卷积(计算机科学)
卷积神经网络
人工智能
深度学习
图像分辨率
编码器
特征(语言学)
接头(建筑物)
图像(数学)
模式识别(心理学)
算法
计算机视觉
人工神经网络
图像复原
图像处理
数学
组合数学
操作系统
光学
物理
工程类
哲学
建筑工程
语言学
作者
Xinyi Zhang,Fei Wang,Hang Dong,Yu Guo
标识
DOI:10.1109/icassp.2018.8462601
摘要
In this paper, we propose an end-to-end convolution neural network (CNN) to restore a clear high-resolution image from a severely blurry image. It's a highly ill-posed problem and brings tremendous challenges to state-of-art deblurring or super-resolution (SR) methods. A straightforward way to solve this problem is to concatenate two types of networks directly. However, experiments show that the concatenation of independent networks increases computation complexity instead of generating satisfying high-resolution images. Consequently, we focus on designing a single deep network to solve the deblurring and SR problems in parallel. Our method, called ED-DSRN, extends the traditional Super-Resolution network by adding a deblurring branch that shares the same feature maps extracted from an encoder-decoder module with the original SR branch. Extensive experiments show that our method produces remarkable deblurred and super-resolved images simultaneously with high efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI