Proteomic and Post‐Translational Modification Profiling of Exosome‐Mimetic Nanovesicles Compared to Exosomes

微泡 外体 蛋白质组 蛋白质组学 内体 生物 细胞生物学 计算生物学 小RNA 基因 生物信息学 遗传学 细胞内
作者
Amirmohammad Nasiri Kenari,Kenneth Kastaniegaard,David W. Greening,Mitch Shambrook,Allan Stensballe,Lesley Cheng,Andrew F. Hill
出处
期刊:Proteomics [Wiley]
卷期号:19 (8) 被引量:69
标识
DOI:10.1002/pmic.201800161
摘要

Issues associated with upscaling exosome production for therapeutic use may be overcome through utilizing artificial exosomes. Cell-derived mimetic nanovesicles (M-NVs) are a potentially promising alternative to exosomes for clinical applicability, demonstrating higher yield without incumbent production and isolation issues. Although several studies have shown that M-NVs have similar morphology, size and therapeutic potential compared to exosomes, comprehensive characterization and to what extent M-NVs components mimic exosomes remain elusive. M-NVs were generated through the extrusion of cells and proteomic profiling demonstrated an enrichment of proteins associated with membrane and cytosolic components. The proteomic data herein reveal a subset of proteins that are highly abundant in M-NVs in comparison to exosomes. M-NVs contain proteins that largely represent the parental cell proteome, whereas the profile of exosomal proteins highlight their endosomally derived origin. This advantage of M-NVs alleviates the necessity of endosomal sorting of endogenous therapeutic proteins or RNA into exosomes. This study also highlights differences in protein post-translational modifications among M-NVs, as distinct from exosomes. Overall this study provides key insights into defining the proteome composition of M-NVs as a distinct from exosomes, and the potential advantage of M-NVs as an alternative nanocarrier when spontaneous endosomal sorting of therapeutics are limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bkagyin应助冬瓜有内涵呐采纳,获得10
1秒前
丰富的小海豚完成签到,获得积分10
1秒前
axiao完成签到,获得积分10
1秒前
2秒前
三石发布了新的文献求助10
2秒前
3秒前
善学以致用应助小椰子采纳,获得10
3秒前
烟花应助好久不见采纳,获得10
10秒前
10秒前
11秒前
每天都想睡觉完成签到,获得积分20
12秒前
Singularity应助zw采纳,获得10
15秒前
hai发布了新的文献求助10
15秒前
3055关注了科研通微信公众号
16秒前
可爱的函函应助三石采纳,获得10
16秒前
烟花应助lx6869采纳,获得10
16秒前
18秒前
MissLi完成签到,获得积分10
20秒前
21秒前
找文献发布了新的文献求助10
21秒前
大模型应助伤心猪大肠采纳,获得10
22秒前
cc发布了新的文献求助10
23秒前
24秒前
Trevino给路人NPC的求助进行了留言
25秒前
Dceer发布了新的文献求助10
29秒前
30秒前
30秒前
hai完成签到,获得积分10
33秒前
34秒前
科研通AI2S应助Shuo Yang采纳,获得30
35秒前
搞怪绝悟应助一棵草采纳,获得10
35秒前
张张发布了新的文献求助10
37秒前
科研通AI2S应助宁宁宁12138采纳,获得10
37秒前
38秒前
38秒前
慕青应助55555采纳,获得10
39秒前
小树发布了新的文献求助10
40秒前
金龙完成签到,获得积分10
40秒前
41秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
Toward personalized care for insomnia in the US Army: a machine learning model to predict response to cognitive behavioral therapy for insomnia 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392438
求助须知:如何正确求助?哪些是违规求助? 3003056
关于积分的说明 8807330
捐赠科研通 2689817
什么是DOI,文献DOI怎么找? 1473309
科研通“疑难数据库(出版商)”最低求助积分说明 681528
邀请新用户注册赠送积分活动 674351