Iodine self-doping and oxygen vacancies doubly surface-modified BiOIO3: Facile in situ synthesis, band gap modulation, and excellent visible-light photocatalytic activity

光催化 材料科学 乙二醇 光化学 可见光谱 罗丹明B 带隙 光降解 激进的 吸附 催化作用 化学工程 化学 有机化学 光电子学 工程类
作者
Jing Yang,Depei Zheng,Xin Xiao,Xiaoxia Wu,Xiaoxi Zuo,Jun Nan
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:373: 935-945 被引量:67
标识
DOI:10.1016/j.cej.2019.05.057
摘要

A novel BiOIO3 photocatalyst surface-modified with both iodine ions and oxygen vacancies, was successfully synthesized via a microwave route followed by heat treatment and can be used for the efficient degradation of various environmental pollutants under visible-light irradiation. Pure BiOIO3, with a band gap of 3.2 eV, was first prepared by a rapid microwave method. Then, during a mild heat-treatment process, BiOIO3 served as a self-sacrificial template and oxidant, while surface-adsorbed ethylene glycol derived from the microwave reaction acted as a reducing agent to in situ generate iodine ions and oxygen vacancies, resulting in a doubly modified BiOIO3 product. By controlling the treatment temperature, the band gaps of the modified BiOIO3 samples can be reversibly tuned by introducing defect energy levels below the conduction band and new impurity energy levels above the valence band, which is supported by the theoretical calculations and experimental analysis. The doubly surface-modified BiOIO3 exhibits excellent visible-light photocatalytic performance for the degradation of several model pollutants, including parabens, rhodamine B, bisphenol A, and 4-hydroxybenzoic acid. Among the synthesized materials, the BiOIO3 sample heat-treated at 125 °C shows a band gap of 2.18 eV and a photocatalytic activity approximately 229 times higher than that of pure BiOIO3. The h+ and O2− radicals are verified to be the key reactive species in the photodegradation process through radical-trapping experiments and electron paramagnetic resonance spectroscopy. This work presents an effective strategy for developing superior visible-light photocatalysts through a mild in situ surface-modification technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
里已经完成签到,获得积分10
1秒前
spring完成签到 ,获得积分10
1秒前
2秒前
Kung完成签到 ,获得积分10
2秒前
动听的代曼完成签到,获得积分10
2秒前
2秒前
包容的幻梅完成签到,获得积分20
2秒前
勇敢肥猫完成签到,获得积分10
2秒前
YAN发布了新的文献求助50
2秒前
完美世界应助圈圈采纳,获得10
3秒前
时尚的蚂蚁完成签到,获得积分10
3秒前
流年完成签到 ,获得积分10
3秒前
MADKAI发布了新的文献求助10
3秒前
xunxunmimi完成签到,获得积分10
4秒前
4秒前
4秒前
刘星星发布了新的文献求助10
5秒前
CodeCraft应助科研菜鸟采纳,获得20
5秒前
zyyyyyyyyyyy完成签到,获得积分10
6秒前
7秒前
研友_8yN60L发布了新的文献求助30
7秒前
打打应助柳七采纳,获得10
8秒前
零零二完成签到 ,获得积分10
8秒前
韭菜盒子发布了新的文献求助10
9秒前
Maestro_S完成签到,获得积分0
9秒前
volzzz发布了新的文献求助10
9秒前
wgglegg完成签到,获得积分10
9秒前
科研通AI5应助小胖鱼采纳,获得10
9秒前
酷波er应助黄超采纳,获得10
9秒前
9秒前
大智若愚啊完成签到,获得积分20
9秒前
10秒前
10秒前
10秒前
彬彬发布了新的文献求助10
10秒前
健壮丹妗完成签到 ,获得积分10
10秒前
Orange应助铸一字错采纳,获得10
10秒前
10秒前
Accept应助阿烨采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740