共价键
弹性体
天然橡胶
动态共价化学
高分子科学
材料科学
环氧树脂
高分子化学
弹性(材料科学)
复合材料
化学
分子
有机化学
超分子化学
作者
Yi Chen,Zhenghai Tang,Yingjun Liu,Siwu Wu,Baochun Guo
出处
期刊:Macromolecules
[American Chemical Society]
日期:2019-05-09
卷期号:52 (10): 3805-3812
被引量:254
标识
DOI:10.1021/acs.macromol.9b00419
摘要
Covalent cross-linking of rubbers is essential for obtaining high resilience and environmental resistance but prevents healing and recycling. Integrating dynamic covalent bonds into cross-linked rubbers can resolve the trade-off between permanent cross-linking and plasticity. The state-of-the-art elastomer-based dynamic covalent networks require either intricate molecular makeup or present poor mechanical properties. In this work, we demonstrate a simple way to prepare mechanically robust yet healable and recyclable elastomeric vitrimers by engineering dynamic dual cross-links of boronic esters and coordination bonds into a commercial rubber. Specifically, epoxidized natural rubber is covalently cross-linked with a boronic ester cross-linker carrying dithiol through chemical reaction between epoxy and thiol groups. The covalently cross-linked networks are able to alter the topologies through boronic ester transesterifications, thereby conferring them with healing ability and reprocessability. In particular, the mechanical properties can be remarkably enhanced by introducing sacrificial metal–ligand coordination bonds into the networks without compromising the healing ability or reprocessability.
科研通智能强力驱动
Strongly Powered by AbleSci AI