Long-Term Prediction of Small Time-Series Data Using Generalized Distillation

不可用 计算机科学 时间序列 期限(时间) 任务(项目管理) 钥匙(锁) 机器学习 系列(地层学) 小数据 数据挖掘 人工智能 大数据 统计 工程类 数学 古生物学 物理 系统工程 生物 量子力学 计算机安全
作者
Shogo Hayashi,Akira Tanimoto,Hisashi Kashima
标识
DOI:10.1109/ijcnn.2019.8851687
摘要

The recent increase of "big data" in our society has led to major impacts of machine learning and data mining technologies in various fields ranging from marketing to science. On the other hand, there still exist areas where only small-sized data are available for various reasons, for example, high data acquisition costs or the rarity of targets events. Machine learning tasks using such small data are usually difficult because of the lack of information available for training accurate prediction models. In particular, for long-term time-series prediction, the data size tends to be small because of the unavailability of the data between input and output times in training. Such limitations on the size of time-series data further make long-term prediction tasks quite difficult; in addition, the difficulty that the far future is more uncertain than the near future.In this paper, we propose a novel method for long-term prediction of small time-series data designed in the framework of generalized distillation. The key idea of the proposed method is to utilize the middle-time data between the input and output times as "privileged information," which is available only in the training phase and not in the test phase. We demonstrate the effectiveness of the proposed method on both synthetic data and real-world data. The experimental results show the proposed method performs well, particularly when the task is difficult and has high input dimensions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
布布发布了新的文献求助10
1秒前
心会完成签到,获得积分10
1秒前
2秒前
Hello应助逯金戎采纳,获得30
3秒前
七院发布了新的文献求助50
4秒前
无花果应助xushanqi采纳,获得10
5秒前
5秒前
ziyuexu发布了新的文献求助10
5秒前
我打死完成签到,获得积分10
6秒前
6秒前
斯文败类应助科研通管家采纳,获得10
7秒前
HCLonely应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
8秒前
Akim应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
8秒前
XINXINWANG完成签到 ,获得积分10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得30
8秒前
10秒前
11秒前
慕青应助叶长安采纳,获得10
12秒前
13秒前
nenoaowu应助eiddn采纳,获得30
14秒前
66完成签到 ,获得积分10
15秒前
风华发布了新的文献求助30
15秒前
16秒前
yang发布了新的文献求助10
18秒前
英俊皮卡丘完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
ziyuexu完成签到,获得积分10
20秒前
ynn发布了新的文献求助10
20秒前
Billy应助七院采纳,获得50
21秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228284
求助须知:如何正确求助?哪些是违规求助? 2876084
关于积分的说明 8193771
捐赠科研通 2543258
什么是DOI,文献DOI怎么找? 1373602
科研通“疑难数据库(出版商)”最低求助积分说明 646814
邀请新用户注册赠送积分活动 621333