A Stochastic Optimization Model for Carbon-Emission Reduction Investment and Sustainable Energy Planning under Cost-Risk Control

环境经济学 随机规划 可再生能源 发电 可持续发展 文件夹 业务 投资(军事) 工程类 数学优化 功率(物理) 经济 物理 电气工程 政治 量子力学 数学 法学 政治学 财务
作者
Liu Ji,Guohe Huang,Dandan Niu,Yanpeng Cai,Jianbing Yin
出处
期刊:Journal of Environmental Informatics [International Society for Environmental Information Sciences]
被引量:67
标识
DOI:10.3808/jei.202000428
摘要

Restricted by conventional energy resources and environmental space, the sustainable development of urban power sector faces enormous challenges. Renewable energy generation and carbon capture and storage (CCS) are attractive technologies for reducing conventional energy resource consumption and improving CO2 emission mitigation. Considering the limitation of expensive investment cost on their wide application, a stochastic optimization model for the optimal design and operation strategy of regional electric power system is proposed to achieve conventional resource-consumption reduction and CO2 emission mitigation under cost-risk control. The hybrid method integrates interval two-stage stochastic programming with downside risk theory. It can not only effectively deal with the complex uncertainties expressed as discrete intervals and probability distribution, but also help decision-makers make cost-risk tradeoff under predetermined budget. The proposed model is applied in the electric power system planning of Zhejiang Province, an economically developed area with limited fossil energy resources. The influences of different resource and environmental policies on the investment portfolio and power system operation are analyzed and discussed under various scenarios. The results indicated that different policies would lead to different generation technology portfolios. The aggressive CO2 emission reduction policy could stimulate the development of CCS technology, and the electric power system would still heavily rely on coal resource, while the tough coal-consumption control policy could directly promote regional renewable energy development and electric power structure adjustment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明天过后完成签到,获得积分10
18秒前
俊俊完成签到 ,获得积分0
23秒前
23秒前
Yangyang完成签到,获得积分10
26秒前
28秒前
可爱可兰完成签到 ,获得积分10
31秒前
Jasper应助一个小胖子采纳,获得10
35秒前
纪智勇完成签到,获得积分10
37秒前
Bethune124完成签到 ,获得积分10
38秒前
Gino完成签到,获得积分0
40秒前
勤劳小懒虫完成签到 ,获得积分10
45秒前
凌晨五点的完成签到,获得积分10
48秒前
thchiang完成签到 ,获得积分10
49秒前
xcwy完成签到,获得积分10
56秒前
烫嘴普通话完成签到,获得积分0
1分钟前
miao123完成签到 ,获得积分10
1分钟前
hesven完成签到 ,获得积分10
1分钟前
1分钟前
英俊绿海完成签到 ,获得积分10
1分钟前
高大厉完成签到 ,获得积分10
1分钟前
龙傲天完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
lelele发布了新的文献求助10
1分钟前
Raymond发布了新的文献求助10
1分钟前
yyyyyy完成签到 ,获得积分10
1分钟前
陌子完成签到 ,获得积分10
1分钟前
lelele完成签到,获得积分10
1分钟前
沉默寻凝完成签到,获得积分10
1分钟前
冷静傲丝完成签到 ,获得积分10
1分钟前
wanci应助Raymond采纳,获得10
1分钟前
苏苏爱学习完成签到,获得积分10
1分钟前
阡陌完成签到,获得积分10
1分钟前
Polymer72应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
书生完成签到,获得积分10
1分钟前
1分钟前
1分钟前
橙子完成签到 ,获得积分10
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339107
求助须知:如何正确求助?哪些是违规求助? 2967059
关于积分的说明 8628085
捐赠科研通 2646543
什么是DOI,文献DOI怎么找? 1449277
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660176