Therapeutic Antibody Engineering and Selection Strategies

噬菌体展示 抗体 免疫原性 生物制药 蛋白质工程 选择(遗传算法) 计算机科学 计算生物学 单克隆抗体 生物 免疫学 遗传学 生物化学 人工智能
作者
Joana Ministro,Ana M. Manuel,João Gonçalves
出处
期刊:Advances in Biochemical Engineering / Biotechnology 卷期号:: 55-86 被引量:31
标识
DOI:10.1007/10_2019_116
摘要

Antibody drugs became an increasingly important element of the therapeutic landscape. Their accomplishment has been driven by many unique properties, in particular by their very high specificity and selectivity, in contrast to the off-target liabilities of small molecules (SMs). Antibodies can bring additional functionality to the table with their ability to interact with the immune system, and this can be further manipulated with advances in antibody engineering.The expansion of strategies related to discovery technologies of monoclonal antibodies (mAbs) (phage display, yeast display, ribosome display, bacterial display, mammalian cell surface display, mRNA display, DNA display, transgenic animal, and human B cell derived) opened perspectives for the screening and the selection of therapeutic antibodies for, theoretically, any target from any kind of organism. Moreover, antibody engineering technologies were developed and explored to obtain chosen characteristics of selected leading candidates such as high affinity, low immunogenicity, improved functionality, improved protein production, improved stability, and others. This chapter contains an overview of discovery technologies, mainly display methods and antibody humanization methods for the selection of therapeutic humanized and human mAbs that appeared along the development of these technologies and thereafter. The increasing applications of these technologies will be highlighted in the antibody engineering area (affinity maturation, guided selection to obtain human antibodies) giving promising perspectives for the development of future therapeutics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杳鸢应助冷酷紫南采纳,获得200
1秒前
666完成签到 ,获得积分10
1秒前
licomen完成签到,获得积分20
1秒前
山楂完成签到,获得积分10
1秒前
Li完成签到,获得积分10
2秒前
3秒前
5秒前
Aray完成签到,获得积分10
5秒前
licomen发布了新的文献求助10
6秒前
852应助努力奋斗采纳,获得10
7秒前
7秒前
彭于晏应助红海采纳,获得10
8秒前
ab发布了新的文献求助10
8秒前
9秒前
一tiao小于发布了新的文献求助10
10秒前
NexusExplorer应助祥瑞采纳,获得10
10秒前
soapffz完成签到,获得积分10
10秒前
11秒前
11秒前
小武wwwww发布了新的文献求助10
12秒前
会飞的鱼发布了新的文献求助10
13秒前
安静夏兰应助哭泣的映寒采纳,获得50
13秒前
云上人发布了新的文献求助10
14秒前
14秒前
沙糖桔完成签到,获得积分10
15秒前
大清发布了新的文献求助10
16秒前
大大怪发布了新的文献求助10
16秒前
16秒前
麦兜兜发布了新的文献求助10
17秒前
www发布了新的文献求助51
17秒前
脑洞疼应助dsdingding采纳,获得10
19秒前
斯文败类应助星期五采纳,获得10
19秒前
zswybs完成签到,获得积分10
19秒前
19秒前
小博发布了新的文献求助10
19秒前
嚭嚭发布了新的文献求助10
20秒前
红海发布了新的文献求助10
20秒前
小武wwwww完成签到,获得积分10
23秒前
师爷完成签到,获得积分10
23秒前
24秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264540
求助须知:如何正确求助?哪些是违规求助? 2904557
关于积分的说明 8330804
捐赠科研通 2574819
什么是DOI,文献DOI怎么找? 1399503
科研通“疑难数据库(出版商)”最低求助积分说明 654506
邀请新用户注册赠送积分活动 633201