自愈水凝胶
伤口愈合
生物材料
肉芽组织
材料科学
生物高聚物
透明质酸
生物医学工程
超分子化学
壳聚糖
化学
聚合物
纳米技术
高分子化学
外科
有机化学
分子
复合材料
医学
解剖
作者
Liyang Shi,Yannan Zhao,Qifan Xie,Caixia Fan,Jöns Hilborn,Jianwu Dai,Dmitri Ossipov
标识
DOI:10.1002/adhm.201700973
摘要
Abstract Biomaterial‐based regenerative approaches would allow for cost‐effective off‐the‐shelf solution for the treatment of wounds. Hyaluronan (HA)‐based hydrogel is one attractive biomaterial candidate because it is involved in natural healing processes, including inflammation, granulation, and reepithelialization. Herein, dynamic metal–ligand coordination bonds are used to fabricate moldable supramolecular HA hydrogels with self‐healing properties. To achieve reversible crosslinking of HA chains, the biopolymer is modified with pendant bisphosphonate (BP) ligands using carbodiimide coupling and chemoselective “click” reactions. Hydrogel is formed immediately after simple addition of silver (Ag + ) ions to the solution of HA containing BP groups (HA‐BP). Compared with previous HA‐based wound healing hydrogels, the HA‐BP·Ag + hydrogel is highly suitable for clinical use as it can fill irregularly shaped wound defects without the need for premolding. The HA‐BP·Ag + hydrogel shows antimicrobial properties to both Gram‐positive and Gram‐negative bacterial strains, enabling prevention of infections in wound care. In vivo evaluation using a rat full‐thickness skin wound model shows significantly lower wound remaining rate and a thicker layer of regenerated epidermis as compared with the group left without treatment. The presented moldable and self‐healing supramolecular HA hydrogel with “ready‐to‐use” properties possesses a great potential for regenerative wound treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI