Machine Learning Algorithms Predict Achievement of Clinically Significant Outcomes After Orthopaedic Surgery: A Systematic Review

医学 骨科手术 算法 外科 机器学习 人工智能 医学物理学 计算机科学
作者
Kyle N. Kunze,Laura M. Krivicich,Ian M. Clapp,Blake M. Bodendorfer,Benedict U. Nwachukwu,Jorge Chahla,Shane J. Nho
出处
期刊:Arthroscopy [Elsevier BV]
卷期号:38 (6): 2090-2105 被引量:38
标识
DOI:10.1016/j.arthro.2021.12.030
摘要

To determine what subspecialties have applied machine learning (ML) to predict clinically significant outcomes (CSOs) within orthopaedic surgery and to determine whether the performance of these models was acceptable through assessing discrimination and other ML metrics where reported.The PubMed, EMBASE, and Cochrane Central Register of Controlled Trials databases were queried for articles that used ML to predict achievement of the minimal clinically important difference (MCID), patient acceptable symptomatic state (PASS), or substantial clinical benefit (SCB) after orthopaedic surgical procedures. Data pertaining to demographic characteristics, subspecialty, specific ML algorithms, and algorithm performance were analyzed.Eighteen articles met the inclusion criteria. Seventeen studies developed novel algorithms, whereas one study externally validated an established algorithm. All studies used ML to predict MCID achievement, whereas 3 (16.7%) predicted SCB achievement and none predicted PASS achievement. Of the studies, 7 (38.9%) concerned outcomes after spine surgery; 6 (33.3%), after sports medicine surgery; 3 (16.7%), after total joint arthroplasty (TJA); and 2 (11.1%), after shoulder arthroplasty. No studies were found regarding trauma, hand, elbow, pediatric, or foot and ankle surgery. In spine surgery, concordance statistics (C-statistics) ranged from 0.65 to 0.92; in hip arthroscopy, 0.51 to 0.94; in TJA, 0.63 to 0.89; and in shoulder arthroplasty, 0.70 to 0.95. Most studies reported C-statistics at the upper end of these ranges, although populations were heterogeneous.Currently available ML algorithms can discriminate the propensity to achieve CSOs using the MCID after spine, TJA, sports medicine, and shoulder surgery with a fair to good performance as evidenced by C-statistics ranging from 0.6 to 0.95 in most analyses. Less evidence is available on the ability of ML to predict achievement of SCB, and no evidence is available for achievement of the PASS. Such algorithms may augment shared decision-making practices and allow clinicians to provide more appropriate patient expectations using individualized risk assessments. However, these studies remain limited by variable reporting of performance metrics, CSO quantification methods, and adherence to predictive modeling guidelines, as well as limited external validation.Level III, systematic review of Level III studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张中山发布了新的文献求助10
1秒前
南风歌初发布了新的文献求助10
1秒前
adamchris应助AlexLXJ采纳,获得10
2秒前
华仔应助LX采纳,获得10
3秒前
小二郎应助xm采纳,获得10
3秒前
3秒前
4秒前
NexusExplorer应助玖玖采纳,获得10
4秒前
保奔完成签到,获得积分10
4秒前
6秒前
6秒前
等待发布了新的文献求助10
7秒前
祖佳完成签到,获得积分10
7秒前
wan12138发布了新的文献求助10
8秒前
小二郎应助lucky采纳,获得10
8秒前
CCsouljump完成签到 ,获得积分10
8秒前
梦想飞翔发布了新的文献求助10
9秒前
10秒前
linzedd发布了新的文献求助10
10秒前
kaede完成签到,获得积分10
11秒前
我是老大应助杰杰大叔采纳,获得10
11秒前
12秒前
丘比特应助迷路的幼南采纳,获得10
12秒前
lzn完成签到,获得积分20
13秒前
14秒前
15秒前
科目三应助爱笑的天空采纳,获得10
15秒前
15秒前
xuexuexixi123完成签到 ,获得积分10
15秒前
17秒前
平淡的冰巧完成签到,获得积分10
17秒前
17秒前
浮游应助志不在科研采纳,获得10
18秒前
two发布了新的文献求助10
19秒前
懒洋洋完成签到 ,获得积分10
20秒前
JL发布了新的文献求助10
20秒前
Eddy完成签到,获得积分10
20秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300590
求助须知:如何正确求助?哪些是违规求助? 4448410
关于积分的说明 13845816
捐赠科研通 4334134
什么是DOI,文献DOI怎么找? 2379350
邀请新用户注册赠送积分活动 1374494
关于科研通互助平台的介绍 1340160