Machine Learning Algorithms Predict Achievement of Clinically Significant Outcomes After Orthopaedic Surgery: A Systematic Review

医学 骨科手术 算法 外科 机器学习 人工智能 医学物理学 计算机科学
作者
Kyle N. Kunze,Laura M. Krivicich,Ian M. Clapp,Blake M. Bodendorfer,Benedict U. Nwachukwu,Jorge Chahla,Shane J. Nho
出处
期刊:Arthroscopy [Elsevier]
卷期号:38 (6): 2090-2105 被引量:38
标识
DOI:10.1016/j.arthro.2021.12.030
摘要

To determine what subspecialties have applied machine learning (ML) to predict clinically significant outcomes (CSOs) within orthopaedic surgery and to determine whether the performance of these models was acceptable through assessing discrimination and other ML metrics where reported.The PubMed, EMBASE, and Cochrane Central Register of Controlled Trials databases were queried for articles that used ML to predict achievement of the minimal clinically important difference (MCID), patient acceptable symptomatic state (PASS), or substantial clinical benefit (SCB) after orthopaedic surgical procedures. Data pertaining to demographic characteristics, subspecialty, specific ML algorithms, and algorithm performance were analyzed.Eighteen articles met the inclusion criteria. Seventeen studies developed novel algorithms, whereas one study externally validated an established algorithm. All studies used ML to predict MCID achievement, whereas 3 (16.7%) predicted SCB achievement and none predicted PASS achievement. Of the studies, 7 (38.9%) concerned outcomes after spine surgery; 6 (33.3%), after sports medicine surgery; 3 (16.7%), after total joint arthroplasty (TJA); and 2 (11.1%), after shoulder arthroplasty. No studies were found regarding trauma, hand, elbow, pediatric, or foot and ankle surgery. In spine surgery, concordance statistics (C-statistics) ranged from 0.65 to 0.92; in hip arthroscopy, 0.51 to 0.94; in TJA, 0.63 to 0.89; and in shoulder arthroplasty, 0.70 to 0.95. Most studies reported C-statistics at the upper end of these ranges, although populations were heterogeneous.Currently available ML algorithms can discriminate the propensity to achieve CSOs using the MCID after spine, TJA, sports medicine, and shoulder surgery with a fair to good performance as evidenced by C-statistics ranging from 0.6 to 0.95 in most analyses. Less evidence is available on the ability of ML to predict achievement of SCB, and no evidence is available for achievement of the PASS. Such algorithms may augment shared decision-making practices and allow clinicians to provide more appropriate patient expectations using individualized risk assessments. However, these studies remain limited by variable reporting of performance metrics, CSO quantification methods, and adherence to predictive modeling guidelines, as well as limited external validation.Level III, systematic review of Level III studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫茉莉发布了新的文献求助100
刚刚
科研通AI2S应助不达鸟采纳,获得10
刚刚
三金发布了新的文献求助10
刚刚
bmyy完成签到,获得积分10
1秒前
2秒前
3秒前
Xing应助攀登采纳,获得10
4秒前
打打应助何一翰采纳,获得30
5秒前
shilong.yang发布了新的文献求助10
5秒前
计划完成签到,获得积分10
5秒前
5秒前
喜遇徐完成签到,获得积分10
6秒前
我有一只小毛驴从来也不骑完成签到,获得积分10
6秒前
ciell发布了新的文献求助10
6秒前
慕青应助西门博超采纳,获得10
6秒前
hanlin发布了新的文献求助10
6秒前
筱唐发布了新的文献求助10
6秒前
JimmyLinlin完成签到,获得积分10
6秒前
panfan发布了新的文献求助10
6秒前
nice1025完成签到,获得积分10
8秒前
tony完成签到,获得积分10
8秒前
8秒前
weisfeat发布了新的文献求助10
9秒前
可爱的函函应助郝宝真采纳,获得10
9秒前
10秒前
10秒前
缇娜发布了新的文献求助10
10秒前
11秒前
minjeong完成签到,获得积分10
11秒前
激情的三毒完成签到,获得积分10
12秒前
Ava应助留胡子的问芙采纳,获得10
13秒前
叶落孤城发布了新的文献求助10
13秒前
苏苏发布了新的文献求助10
13秒前
hua完成签到,获得积分10
13秒前
13秒前
13秒前
令狐紫夏完成签到,获得积分10
13秒前
酷炫茉莉完成签到,获得积分10
14秒前
11完成签到,获得积分10
14秒前
14秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169392
求助须知:如何正确求助?哪些是违规求助? 2820584
关于积分的说明 7931656
捐赠科研通 2480996
什么是DOI,文献DOI怎么找? 1321620
科研通“疑难数据库(出版商)”最低求助积分说明 633287
版权声明 602528