Machine Learning Algorithms Predict Achievement of Clinically Significant Outcomes After Orthopaedic Surgery: A Systematic Review

医学 骨科手术 算法 外科 机器学习 人工智能 医学物理学 计算机科学
作者
Kyle N. Kunze,Laura M. Krivicich,Ian M. Clapp,Blake M. Bodendorfer,Benedict U. Nwachukwu,Jorge Chahla,Shane J. Nho
出处
期刊:Arthroscopy [Elsevier BV]
卷期号:38 (6): 2090-2105 被引量:38
标识
DOI:10.1016/j.arthro.2021.12.030
摘要

To determine what subspecialties have applied machine learning (ML) to predict clinically significant outcomes (CSOs) within orthopaedic surgery and to determine whether the performance of these models was acceptable through assessing discrimination and other ML metrics where reported.The PubMed, EMBASE, and Cochrane Central Register of Controlled Trials databases were queried for articles that used ML to predict achievement of the minimal clinically important difference (MCID), patient acceptable symptomatic state (PASS), or substantial clinical benefit (SCB) after orthopaedic surgical procedures. Data pertaining to demographic characteristics, subspecialty, specific ML algorithms, and algorithm performance were analyzed.Eighteen articles met the inclusion criteria. Seventeen studies developed novel algorithms, whereas one study externally validated an established algorithm. All studies used ML to predict MCID achievement, whereas 3 (16.7%) predicted SCB achievement and none predicted PASS achievement. Of the studies, 7 (38.9%) concerned outcomes after spine surgery; 6 (33.3%), after sports medicine surgery; 3 (16.7%), after total joint arthroplasty (TJA); and 2 (11.1%), after shoulder arthroplasty. No studies were found regarding trauma, hand, elbow, pediatric, or foot and ankle surgery. In spine surgery, concordance statistics (C-statistics) ranged from 0.65 to 0.92; in hip arthroscopy, 0.51 to 0.94; in TJA, 0.63 to 0.89; and in shoulder arthroplasty, 0.70 to 0.95. Most studies reported C-statistics at the upper end of these ranges, although populations were heterogeneous.Currently available ML algorithms can discriminate the propensity to achieve CSOs using the MCID after spine, TJA, sports medicine, and shoulder surgery with a fair to good performance as evidenced by C-statistics ranging from 0.6 to 0.95 in most analyses. Less evidence is available on the ability of ML to predict achievement of SCB, and no evidence is available for achievement of the PASS. Such algorithms may augment shared decision-making practices and allow clinicians to provide more appropriate patient expectations using individualized risk assessments. However, these studies remain limited by variable reporting of performance metrics, CSO quantification methods, and adherence to predictive modeling guidelines, as well as limited external validation.Level III, systematic review of Level III studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助热情的菲音采纳,获得10
刚刚
1秒前
香蕉新筠发布了新的文献求助10
1秒前
2秒前
qian发布了新的文献求助10
2秒前
2秒前
2秒前
秦Q完成签到,获得积分10
3秒前
3秒前
坚定的芸完成签到,获得积分10
3秒前
圆锥香蕉应助lzs1995采纳,获得200
4秒前
苏烟完成签到 ,获得积分10
4秒前
小唐完成签到,获得积分20
4秒前
堕落的飞猪完成签到,获得积分10
5秒前
可爱的函函应助天生圣人采纳,获得10
5秒前
MengxiaoPeng发布了新的文献求助10
5秒前
齐平露发布了新的文献求助10
5秒前
5秒前
Akim应助千千晚星采纳,获得10
6秒前
苦哈哈发布了新的文献求助10
6秒前
202412951124完成签到,获得积分20
7秒前
邱彗星发布了新的文献求助10
7秒前
科研通AI2S应助畅快盼望采纳,获得10
8秒前
jinzheng发布了新的文献求助10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
郑雅柔完成签到 ,获得积分0
9秒前
chong0919完成签到,获得积分10
9秒前
科研小狗完成签到,获得积分10
10秒前
10秒前
10秒前
sincyking完成签到,获得积分10
10秒前
Yolo发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
oohQoo发布了新的文献求助10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978729
求助须知:如何正确求助?哪些是违规求助? 3522741
关于积分的说明 11214658
捐赠科研通 3260224
什么是DOI,文献DOI怎么找? 1799815
邀请新用户注册赠送积分活动 878676
科研通“疑难数据库(出版商)”最低求助积分说明 807052