Machine Learning Algorithms Predict Achievement of Clinically Significant Outcomes After Orthopaedic Surgery: A Systematic Review

医学 骨科手术 算法 外科 机器学习 人工智能 医学物理学 计算机科学
作者
Kyle N. Kunze,Laura M. Krivicich,Ian M. Clapp,Blake M. Bodendorfer,Benedict U. Nwachukwu,Jorge Chahla,Shane J. Nho
出处
期刊:Arthroscopy [Elsevier]
卷期号:38 (6): 2090-2105 被引量:38
标识
DOI:10.1016/j.arthro.2021.12.030
摘要

To determine what subspecialties have applied machine learning (ML) to predict clinically significant outcomes (CSOs) within orthopaedic surgery and to determine whether the performance of these models was acceptable through assessing discrimination and other ML metrics where reported.The PubMed, EMBASE, and Cochrane Central Register of Controlled Trials databases were queried for articles that used ML to predict achievement of the minimal clinically important difference (MCID), patient acceptable symptomatic state (PASS), or substantial clinical benefit (SCB) after orthopaedic surgical procedures. Data pertaining to demographic characteristics, subspecialty, specific ML algorithms, and algorithm performance were analyzed.Eighteen articles met the inclusion criteria. Seventeen studies developed novel algorithms, whereas one study externally validated an established algorithm. All studies used ML to predict MCID achievement, whereas 3 (16.7%) predicted SCB achievement and none predicted PASS achievement. Of the studies, 7 (38.9%) concerned outcomes after spine surgery; 6 (33.3%), after sports medicine surgery; 3 (16.7%), after total joint arthroplasty (TJA); and 2 (11.1%), after shoulder arthroplasty. No studies were found regarding trauma, hand, elbow, pediatric, or foot and ankle surgery. In spine surgery, concordance statistics (C-statistics) ranged from 0.65 to 0.92; in hip arthroscopy, 0.51 to 0.94; in TJA, 0.63 to 0.89; and in shoulder arthroplasty, 0.70 to 0.95. Most studies reported C-statistics at the upper end of these ranges, although populations were heterogeneous.Currently available ML algorithms can discriminate the propensity to achieve CSOs using the MCID after spine, TJA, sports medicine, and shoulder surgery with a fair to good performance as evidenced by C-statistics ranging from 0.6 to 0.95 in most analyses. Less evidence is available on the ability of ML to predict achievement of SCB, and no evidence is available for achievement of the PASS. Such algorithms may augment shared decision-making practices and allow clinicians to provide more appropriate patient expectations using individualized risk assessments. However, these studies remain limited by variable reporting of performance metrics, CSO quantification methods, and adherence to predictive modeling guidelines, as well as limited external validation.Level III, systematic review of Level III studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
顾翩翩发布了新的文献求助10
2秒前
2秒前
Alan发布了新的文献求助10
2秒前
3秒前
adrenline发布了新的文献求助10
3秒前
CKX发布了新的文献求助10
4秒前
4秒前
浮生若梦完成签到,获得积分10
4秒前
成懂事长发布了新的文献求助10
4秒前
5秒前
木子完成签到 ,获得积分10
5秒前
科研通AI2S应助不想学习采纳,获得10
6秒前
沉默南露发布了新的文献求助10
7秒前
Hello应助123采纳,获得10
8秒前
Alan完成签到,获得积分10
8秒前
可爱丸子发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
浮生若梦发布了新的文献求助10
10秒前
顾矜应助沉默南露采纳,获得10
11秒前
yxy完成签到,获得积分20
11秒前
andrele发布了新的文献求助30
11秒前
ChiangYu完成签到,获得积分10
12秒前
xuan完成签到,获得积分10
12秒前
皮卡丘完成签到 ,获得积分0
13秒前
cc完成签到,获得积分20
13秒前
hh完成签到 ,获得积分10
13秒前
Akim应助默默采纳,获得10
13秒前
长生完成签到 ,获得积分10
14秒前
wsw111发布了新的文献求助10
14秒前
Joey完成签到 ,获得积分10
15秒前
我是老大应助体贴茗采纳,获得10
15秒前
柴啊发布了新的文献求助30
15秒前
15秒前
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792