亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Algorithms Predict Achievement of Clinically Significant Outcomes After Orthopaedic Surgery: A Systematic Review

医学 骨科手术 算法 外科 机器学习 人工智能 医学物理学 计算机科学
作者
Kyle N. Kunze,Laura M. Krivicich,Ian M. Clapp,Blake M. Bodendorfer,Benedict U. Nwachukwu,Jorge Chahla,Shane J. Nho
出处
期刊:Arthroscopy [Elsevier]
卷期号:38 (6): 2090-2105 被引量:38
标识
DOI:10.1016/j.arthro.2021.12.030
摘要

To determine what subspecialties have applied machine learning (ML) to predict clinically significant outcomes (CSOs) within orthopaedic surgery and to determine whether the performance of these models was acceptable through assessing discrimination and other ML metrics where reported.The PubMed, EMBASE, and Cochrane Central Register of Controlled Trials databases were queried for articles that used ML to predict achievement of the minimal clinically important difference (MCID), patient acceptable symptomatic state (PASS), or substantial clinical benefit (SCB) after orthopaedic surgical procedures. Data pertaining to demographic characteristics, subspecialty, specific ML algorithms, and algorithm performance were analyzed.Eighteen articles met the inclusion criteria. Seventeen studies developed novel algorithms, whereas one study externally validated an established algorithm. All studies used ML to predict MCID achievement, whereas 3 (16.7%) predicted SCB achievement and none predicted PASS achievement. Of the studies, 7 (38.9%) concerned outcomes after spine surgery; 6 (33.3%), after sports medicine surgery; 3 (16.7%), after total joint arthroplasty (TJA); and 2 (11.1%), after shoulder arthroplasty. No studies were found regarding trauma, hand, elbow, pediatric, or foot and ankle surgery. In spine surgery, concordance statistics (C-statistics) ranged from 0.65 to 0.92; in hip arthroscopy, 0.51 to 0.94; in TJA, 0.63 to 0.89; and in shoulder arthroplasty, 0.70 to 0.95. Most studies reported C-statistics at the upper end of these ranges, although populations were heterogeneous.Currently available ML algorithms can discriminate the propensity to achieve CSOs using the MCID after spine, TJA, sports medicine, and shoulder surgery with a fair to good performance as evidenced by C-statistics ranging from 0.6 to 0.95 in most analyses. Less evidence is available on the ability of ML to predict achievement of SCB, and no evidence is available for achievement of the PASS. Such algorithms may augment shared decision-making practices and allow clinicians to provide more appropriate patient expectations using individualized risk assessments. However, these studies remain limited by variable reporting of performance metrics, CSO quantification methods, and adherence to predictive modeling guidelines, as well as limited external validation.Level III, systematic review of Level III studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
fcycukvujblk完成签到,获得积分10
12秒前
18秒前
breeze发布了新的文献求助50
18秒前
沫雨发布了新的文献求助20
23秒前
44秒前
李健应助科研通管家采纳,获得10
44秒前
Gryff完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
夜雨声烦发布了新的文献求助20
1分钟前
明理元灵发布了新的文献求助10
1分钟前
小石头完成签到 ,获得积分10
1分钟前
2分钟前
隐形曼青应助研友_P85MX8采纳,获得10
2分钟前
NexusExplorer应助willlee采纳,获得10
2分钟前
英俊的铭应助GaPb氘壬采纳,获得10
2分钟前
Akim应助kli_28采纳,获得10
3分钟前
早早入眠完成签到,获得积分10
3分钟前
zswybs完成签到,获得积分10
3分钟前
3分钟前
ala发布了新的文献求助10
3分钟前
科研通AI6应助明理元灵采纳,获得10
4分钟前
zhuxiaonian完成签到,获得积分10
4分钟前
韩擎宇发布了新的文献求助10
4分钟前
4分钟前
kli_28发布了新的文献求助10
4分钟前
852应助微笑的鼠标采纳,获得10
4分钟前
4分钟前
4分钟前
GaPb氘壬发布了新的文献求助10
5分钟前
kli_28完成签到,获得积分10
5分钟前
5分钟前
GaPb氘壬完成签到,获得积分10
5分钟前
Double发布了新的文献求助10
5分钟前
5分钟前
韩擎宇完成签到 ,获得积分10
5分钟前
5分钟前
研友_P85MX8发布了新的文献求助10
5分钟前
明理元灵发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438548
求助须知:如何正确求助?哪些是违规求助? 4549760
关于积分的说明 14220919
捐赠科研通 4470568
什么是DOI,文献DOI怎么找? 2449962
邀请新用户注册赠送积分活动 1440917
关于科研通互助平台的介绍 1417344