Tunable and enhanced microwave absorption properties by adjusting the distribution of Co/CoFe embedded into the carbon nanohorns and graphene microspheres

反射损耗 石墨烯 材料科学 微波食品加热 散射 衰减 介电损耗 吸收(声学) 光电子学 兴奋剂 电磁辐射 纳米技术 电介质 复合材料 光学 复合数 电信 物理 计算机科学
作者
Zihan Zhang,Yanli Nan,Jian Wei,Yun Zhou,Mingtao Qiao
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:922: 166201-166201 被引量:1
标识
DOI:10.1016/j.jallcom.2022.166201
摘要

Designing unique structures of magnetic particle/carbon composites with multiple heterogeneous interfaces is an effective strategy for improving the properties of microwave absorption. Herein, hierarchical spacing arrangements for [email protected] nanohorns and [email protected] microspheres ([email protected]/G) with N enrichment were synthesized by a simple self-assembly method. As a result, [email protected]/G exhibited excellent electromagnetic wave absorption performance, and its reflection loss (RL) values of − 44.72 dB and − 41.39 dB at the C band had thicknesses of 2.9 mm and 2.5 mm, respectively. Additionally, the maximum effective absorption bandwidth (RL ≤ −10 dB) was 5.7 GHz at 1.4 mm. More importantly, the distribution of metal nanoparticles into CNHs and graphene microspheres were adjusted by forming the CoFe alloy embedded into CNHs and graphene microspheres during arc discharge process. Consequently, the frequency of RL ≤ −40.00 dB was from the C band to the X band by changing the multiple scattering paths, and the corresponding thickness for the minimum RL (−40.00 dB) was 1.8 mm. The outstanding electromagnetic absorbing performance was mainly attributed to the enhanced dielectric loss involving interfacial polarization derived from multiple heterogeneous interfaces, dipolar polarization induced by N-doping, and defects in the CNHs and graphene. In addition, multiple complex scattering paths can further improve the attenuation of electromagnetic waves.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
zy完成签到,获得积分10
2秒前
开心果子发布了新的文献求助10
2秒前
云痴子完成签到,获得积分10
3秒前
SciGPT应助粥粥采纳,获得10
3秒前
3秒前
3秒前
4秒前
苏源完成签到,获得积分10
4秒前
wu关闭了wu文献求助
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
6秒前
Shawn完成签到,获得积分10
7秒前
yltstt完成签到,获得积分10
8秒前
李小新发布了新的文献求助10
8秒前
成梦发布了新的文献求助10
9秒前
乐乐应助xuex1采纳,获得10
9秒前
蜂鸟5156发布了新的文献求助10
9秒前
李爱国应助VDC采纳,获得10
10秒前
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
ns完成签到,获得积分10
11秒前
细腻晓露发布了新的文献求助10
11秒前
李本来发布了新的文献求助10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得30
12秒前
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得30
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
NN应助科研通管家采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808