脚手架
细胞生物学
细胞外基质
去细胞化
再生医学
肌腱
再生(生物学)
干细胞
间充质干细胞
细胞分化
化学
生物医学工程
生物
解剖
生物化学
医学
基因
作者
Liang‐Ju Ning,Jing Cui,Shu-Kun He,Ruo-Nan Hu,Xuan Yao,Yi Zhang,Wei Ding,Yanjing Zhang,Jingcong Luo,Tingwu Qin
摘要
Developing highly bioactive scaffold materials to promote stem cell migration, proliferation and tissue-specific differentiation is a crucial requirement in current tissue engineering and regenerative medicine. Our previous work has demonstrated that the decellularized tendon slices (DTSs) are able to promote stem cell proliferation and tenogenic differentiation in vitro and show certain pro-regenerative capacity for rotator cuff tendon regeneration in vivo. In this study, we present a strategy to further improve the bioactivity of the DTSs for constructing a novel highly bioactive tendon-regenerative scaffold by surface modification of tendon-specific stem cell-derived extracellular matrix (tECM), which is expected to greatly enhance the capacity of scaffold material in regulating stem cell behavior, including migration, proliferation and tenogenic differentiation. We prove that the modification of tECM could change the highly aligned surface topographical cues of the DTSs, retain the surface stiffness of the DTSs and significantly increase the content of multiple ECM components in the tECM-DTSs. As a result, the tECM-DTSs dramatically enhance the migration, proliferation as well as tenogenic differentiation of rat bone marrow-derived stem cells compared with the DTSs. Collectively, this strategy would provide a new way for constructing ECM-based biomaterials with enhanced bioactivity for in situ tendon regeneration applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI