厚壁菌
蛋白质细菌
子囊菌纲
生物
微生物种群生物学
擔子菌門
微生物生态学
群落结构
农学
植物
生态学
16S核糖体RNA
细菌
生物化学
遗传学
基因
作者
Xinyu Cui,Huan He,Feng Zhu,Xiaobo Liu,You Ma,Wen‐Ming Xie,Han Meng,Limin Zhang
标识
DOI:10.1007/s00203-022-03074-7
摘要
Soil microorganisms play a vital role in biogeochemical processes and nutrient turnover in agricultural ecosystems. However, the information on how the structure and co-occurrence patterns of microbial communities response to the change of planting methods is still limited. In this study, a total of 34 soil samples were collected from 17 different fields of 2 planting types (wheat and orchards) along the Taige Canal in Yangtze River Delta. The structure of bacterial and fungal communities in soil were determined by 16S rRNA gene and ITS gene, respectively. The dominated bacteria were Proteobacteria, Acidobacteriota, Actinobacteriota, Chloroflexi, Bacteroidota, and Firmicutes. The relative abundances of Actinobacteriota and Firmicutes were higher in the orchards, while Chloroflexi and Nitrospirota were more abundant in wheat fields. Ascomycota, Mortierellomycota, and Basidiomycota were the predominant fungus in both soil types. Diversity of bacterial and fungal communities were greater in the wheat fields than in orchards. Statistical analyses showed that pH was the main factor shaping the community structure, and parameters of water content (WC), total organic carbon (TOC) and total nitrogen (TN) had great influences on community structure. Moreover, high co-occurrence patterns of bacterial and fungal were confirmed in both wheat fields and orchards. Network analyses showed that both wheat fields and orchards occurred modular structure, including nodes of Acidobacteriota, Chloroflexi, Gemmatimonadota, Nitrospirota and Ascomycota. In summary, our work showed the co-occurrence network and the convergence/divergence of microbial community structure in wheat fields and orchards, giving a comprehensive understanding of the microbe-microbe interaction during planting methods' changes.
科研通智能强力驱动
Strongly Powered by AbleSci AI