清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Machine Learning–Based Prognostic Model for the Prediction of Early Death After Traumatic Brain Injury: Comparison with the Corticosteroid Randomization After Significant Head Injury (CRASH) Model

医学 创伤性脑损伤 头部受伤 撞车 随机化 皮质类固醇 外科 随机对照试验 精神科 计算机科学 程序设计语言
作者
Sang Hyub Lee,Chul Hee Lee,Soo Hyun Hwang,Dong Ho Kang
出处
期刊:World Neurosurgery [Elsevier]
卷期号:166: e125-e134 被引量:8
标识
DOI:10.1016/j.wneu.2022.06.130
摘要

Machine learning (ML) has been used to predict the outcomes of traumatic brain injury. However, few studies have reported the use of ML models to predict early death. This study aimed to develop ML models for early death prediction and to compare performance with the corticosteroid randomization after significant head injury (CRASH) model. We retrospectively reviewed traumatic brain injury patients between February 2017 and August 2021. The patients were randomly assigned to a training set and a test set. Predictive variables included clinical findings, laboratory values, and computed tomography findings. The ML models (random forest, support vector machine [SVM], logistic regression) were developed with the training set. The CRASH model is a prognostic model that was developed based on 10,008 patients included in the CRASH trial. The ML and CRASH models were applied to the test set to evaluate the performance. A total of 423 patients were included; 317 and 106 patients were randomly assigned to the training and test sets, respectively. The area under the curve was highest in the SVM (0.952, 95% confidence interval = 0.906–0.990) and lowest in the CRASH model (0.942, 95% confidence interval = 0.886–0.999). There were no significant differences between the area under the curves of the ML and CRASH models (P = 0.899 for random forest vs. the CRASH model, P = 0.760 for SVM vs. the CRASH model, P = 0.806 for logistic regression vs. the CRASH model). The ML models may have comparable performances compared to the CRASH model despite being developed with a smaller sample size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小阿博发布了新的文献求助10
3秒前
领导范儿应助lovelife采纳,获得10
4秒前
小阿博发布了新的文献求助10
16秒前
Claudia完成签到,获得积分10
1分钟前
Claudia发布了新的文献求助10
1分钟前
1分钟前
lovelife发布了新的文献求助10
1分钟前
1分钟前
ldjldj_2004完成签到 ,获得积分10
2分钟前
mzhang2完成签到 ,获得积分10
2分钟前
可爱的函函应助如沐春风采纳,获得10
2分钟前
小二郎应助大海的DOI采纳,获得10
2分钟前
2分钟前
2分钟前
如沐春风发布了新的文献求助10
2分钟前
如沐春风完成签到,获得积分10
2分钟前
打打应助如沐春风采纳,获得10
3分钟前
3分钟前
大海的DOI发布了新的文献求助10
3分钟前
3分钟前
如沐春风发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Lucas应助如沐春风采纳,获得10
3分钟前
3分钟前
一蓑烟雨任平生完成签到,获得积分0
5分钟前
xx完成签到 ,获得积分10
5分钟前
6分钟前
小学生学免疫完成签到 ,获得积分10
6分钟前
方琼燕完成签到 ,获得积分10
6分钟前
李歪歪完成签到 ,获得积分10
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
香蕉觅云应助风华采纳,获得10
7分钟前
7分钟前
风华发布了新的文献求助10
7分钟前
鬼见愁应助StayGolDay采纳,获得10
7分钟前
Faine完成签到 ,获得积分10
7分钟前
7分钟前
风华完成签到,获得积分10
7分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311215
求助须知:如何正确求助?哪些是违规求助? 2943920
关于积分的说明 8516766
捐赠科研通 2619310
什么是DOI,文献DOI怎么找? 1432204
科研通“疑难数据库(出版商)”最低求助积分说明 664536
邀请新用户注册赠送积分活动 649815