亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Flexible battery state of health and state of charge estimation using partial charging data and deep learning

电池(电) 荷电状态 灵活性(工程) 健康状况 国家(计算机科学) 计算机科学 估计 电池容量 人工神经网络 卷积神经网络 均方误差 实时计算 算法 人工智能 工程类 数学 统计 功率(物理) 系统工程 物理 量子力学
作者
Jinpeng Tian,Rui Xiong,Weixiang Shen,Jiahuan Lu,Fengchun Sun
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:51: 372-381 被引量:184
标识
DOI:10.1016/j.ensm.2022.06.053
摘要

Accurately monitoring battery states over battery life plays a central role in building intelligent battery management systems. This study proposes a flexible method using only short pieces of charging data to estimate both maximum and remaining capacities to simultaneously address the state of health and state of charge estimation problems. Different from conventional studies based on specific operating data to estimate one state, the proposed method is based on a convolutional neural network that only requires short-term charging data to estimate two states. The proposed method is first validated based on the degradation data of eight 0.74 Ah batteries. We show that the maximum and remaining capacities can be accurately estimated using arbitrary pieces of 1 C charging data collected within 400 s over battery life, and the root mean square error is lower than 12.68 mAh. The influence of the input data length and different loss weights of the two states is investigated to demonstrate the high flexibility of the proposed method. Interestingly, it is observed that the simultaneous estimation of two states achieves higher accuracy than individual state estimation. Further validations on other two types of batteries reveal that the proposed method can ensure reliable estimation in the cases of different battery chemistries and different working conditions. Our method offers a flexible and easy-to-implement approach to achieving an accurate estimation of multiple states over battery life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
13秒前
爆米花应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
27秒前
30秒前
我是老大应助王同学采纳,获得10
32秒前
小新小新完成签到 ,获得积分10
42秒前
王同学完成签到,获得积分10
42秒前
49秒前
1分钟前
1分钟前
1分钟前
科研通AI5应助ngan0901采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
wh完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Eileen完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
科研通AI6应助任性大米采纳,获得10
3分钟前
3分钟前
3分钟前
SciGPT应助Mausmensch采纳,获得10
4分钟前
4分钟前
orixero应助dadada采纳,获得10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得30
4分钟前
dadada发布了新的文献求助10
4分钟前
4分钟前
12A完成签到,获得积分10
4分钟前
浮游应助dadada采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
RF and Microwave Power Amplifiers 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5019383
求助须知:如何正确求助?哪些是违规求助? 4258380
关于积分的说明 13271029
捐赠科研通 4063237
什么是DOI,文献DOI怎么找? 2222548
邀请新用户注册赠送积分活动 1231595
关于科研通互助平台的介绍 1154638