Flexible battery state of health and state of charge estimation using partial charging data and deep learning

电池(电) 荷电状态 灵活性(工程) 健康状况 国家(计算机科学) 计算机科学 估计 电池容量 人工神经网络 卷积神经网络 均方误差 实时计算 算法 人工智能 工程类 数学 统计 功率(物理) 系统工程 物理 量子力学
作者
Jinpeng Tian,Rui Xiong,Weixiang Shen,Jiahuan Lu,Fengchun Sun
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:51: 372-381 被引量:111
标识
DOI:10.1016/j.ensm.2022.06.053
摘要

Accurately monitoring battery states over battery life plays a central role in building intelligent battery management systems. This study proposes a flexible method using only short pieces of charging data to estimate both maximum and remaining capacities to simultaneously address the state of health and state of charge estimation problems. Different from conventional studies based on specific operating data to estimate one state, the proposed method is based on a convolutional neural network that only requires short-term charging data to estimate two states. The proposed method is first validated based on the degradation data of eight 0.74 Ah batteries. We show that the maximum and remaining capacities can be accurately estimated using arbitrary pieces of 1 C charging data collected within 400 s over battery life, and the root mean square error is lower than 12.68 mAh. The influence of the input data length and different loss weights of the two states is investigated to demonstrate the high flexibility of the proposed method. Interestingly, it is observed that the simultaneous estimation of two states achieves higher accuracy than individual state estimation. Further validations on other two types of batteries reveal that the proposed method can ensure reliable estimation in the cases of different battery chemistries and different working conditions. Our method offers a flexible and easy-to-implement approach to achieving an accurate estimation of multiple states over battery life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
Java完成签到,获得积分10
2秒前
掌心化雪完成签到,获得积分10
4秒前
解师发布了新的文献求助10
4秒前
5秒前
TAboo完成签到,获得积分10
5秒前
5秒前
科目三应助zzO采纳,获得10
5秒前
邢夏之完成签到,获得积分10
6秒前
秋梧发布了新的文献求助10
6秒前
PANSIXUAN完成签到,获得积分10
6秒前
nana完成签到,获得积分10
7秒前
9秒前
xingkong发布了新的文献求助10
10秒前
12秒前
13秒前
13秒前
666完成签到,获得积分10
13秒前
55完成签到,获得积分10
14秒前
书记完成签到,获得积分10
14秒前
靓丽行天完成签到,获得积分10
14秒前
33应助雪白的人雄采纳,获得10
15秒前
apckkk完成签到 ,获得积分10
15秒前
无奈的萍完成签到,获得积分10
15秒前
风中沂完成签到 ,获得积分10
15秒前
聪慧的迎夏完成签到,获得积分10
16秒前
木刻青、完成签到,获得积分10
17秒前
ai白哥完成签到,获得积分10
17秒前
大傻春完成签到 ,获得积分10
17秒前
18秒前
zehua309完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
杨石石石完成签到 ,获得积分10
21秒前
lixy完成签到,获得积分10
21秒前
shy完成签到,获得积分10
22秒前
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450572
求助须知:如何正确求助?哪些是违规求助? 3046089
关于积分的说明 9004332
捐赠科研通 2734767
什么是DOI,文献DOI怎么找? 1500127
科研通“疑难数据库(出版商)”最低求助积分说明 693369
邀请新用户注册赠送积分活动 691542