Flexible battery state of health and state of charge estimation using partial charging data and deep learning

电池(电) 荷电状态 灵活性(工程) 健康状况 国家(计算机科学) 计算机科学 估计 电池容量 人工神经网络 卷积神经网络 均方误差 实时计算 算法 人工智能 工程类 数学 统计 功率(物理) 系统工程 物理 量子力学
作者
Jinpeng Tian,Rui Xiong,Weixiang Shen,Jiahuan Lu,Fengchun Sun
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:51: 372-381 被引量:155
标识
DOI:10.1016/j.ensm.2022.06.053
摘要

Accurately monitoring battery states over battery life plays a central role in building intelligent battery management systems. This study proposes a flexible method using only short pieces of charging data to estimate both maximum and remaining capacities to simultaneously address the state of health and state of charge estimation problems. Different from conventional studies based on specific operating data to estimate one state, the proposed method is based on a convolutional neural network that only requires short-term charging data to estimate two states. The proposed method is first validated based on the degradation data of eight 0.74 Ah batteries. We show that the maximum and remaining capacities can be accurately estimated using arbitrary pieces of 1 C charging data collected within 400 s over battery life, and the root mean square error is lower than 12.68 mAh. The influence of the input data length and different loss weights of the two states is investigated to demonstrate the high flexibility of the proposed method. Interestingly, it is observed that the simultaneous estimation of two states achieves higher accuracy than individual state estimation. Further validations on other two types of batteries reveal that the proposed method can ensure reliable estimation in the cases of different battery chemistries and different working conditions. Our method offers a flexible and easy-to-implement approach to achieving an accurate estimation of multiple states over battery life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LUCA发布了新的文献求助10
刚刚
搞怪莫茗发布了新的文献求助10
刚刚
1秒前
1秒前
彭于晏应助weerfi采纳,获得10
1秒前
隐形曼青应助正在进行时采纳,获得10
2秒前
海东来应助高大的天道采纳,获得50
2秒前
开放飞阳完成签到,获得积分10
2秒前
科研通AI2S应助帅气凝云采纳,获得10
2秒前
Deny完成签到,获得积分10
2秒前
orixero应助Elliot_315采纳,获得10
2秒前
3秒前
3秒前
sugar完成签到,获得积分10
3秒前
JamesPei应助张灬小胖采纳,获得10
4秒前
王小小完成签到,获得积分10
4秒前
Cheung2121完成签到,获得积分20
4秒前
5秒前
5秒前
kelly完成签到,获得积分10
5秒前
共享精神应助JM采纳,获得10
5秒前
坦率的匪举报111求助涉嫌违规
6秒前
长情的千风完成签到,获得积分10
6秒前
6秒前
woshiwuziq完成签到 ,获得积分10
7秒前
anna1992发布了新的文献求助10
8秒前
YY完成签到,获得积分10
8秒前
符宇新发布了新的文献求助10
8秒前
iNk应助kk采纳,获得10
9秒前
小马甲应助有机分子笼采纳,获得10
9秒前
9秒前
9秒前
张文静发布了新的文献求助30
9秒前
沉默的小天鹅应助xiaose采纳,获得10
10秒前
章宇完成签到,获得积分10
10秒前
充电宝应助123采纳,获得10
11秒前
想喝冰美完成签到,获得积分10
11秒前
bkagyin应助小海采纳,获得10
11秒前
帅气凝云完成签到,获得积分10
11秒前
LUKW给嘟嘟喂嘟嘟的求助进行了留言
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650