亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Dimensional Cascaded Net with Uncertain Probability Reduction for Abdominal Multi-Organ Segmentation in CT Sequences

分割 计算机科学 人工智能 增采样 掷骰子 推论 边界(拓扑) 模式识别(心理学) 计算机视觉 图像(数学) 数学 几何学 数学分析
作者
Chengkang Li,Yishen Mao,Yi Guo,Ji Li,Yuanyuan Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:221: 106887-106887 被引量:9
标识
DOI:10.1016/j.cmpb.2022.106887
摘要

Deep learning abdominal multi-organ segmentation provides preoperative guidance for abdominal surgery. However, due to the large volume of 3D CT sequences, the existing methods cannot balance complete semantic features and high-resolution detail information, which leads to uncertain, rough, and inaccurate segmentation, especially in small and irregular organs. In this paper, we propose a two-stage algorithm named multi-dimensional cascaded net (MDCNet) to solve the above problems and segment multi-organs in CT images, including the spleen, kidney, gallbladder, esophagus, liver, stomach, pancreas, and duodenum.MDCNet combines the powerful semantic encoder ability of a 3D net and the rich high-resolution information of a 2.5D net. In stage1, a prior-guided shallow-layer-enhanced 3D location net extracts entire semantic features from a downsampled CT volume to perform rough segmentation. Additionally, we use circular inference and parameter Dice loss to alleviate uncertain boundary. The inputs of stage2 are high-resolution slices, which are obtained by the original image and coarse segmentation of stage1. Stage2 offsets the details lost during downsampling, resulting in smooth and accurate refined contours. The 2.5D net from the axial, coronal, and sagittal views also compensates for the missing spatial information of a single view.The experiments on the two datasets both obtained the best performance, particularly a higher Dice on small gallbladders and irregular duodenums, which reached 0.85±0.12 and 0.77±0.07 respectively, increasing by 0.02 and 0.03 compared to the state-of-the-art method.Our method can extract all semantic and high-resolution detail information from a large-volume CT image. It reduces the boundary uncertainty while yielding smoother segmentation edges, indicating good clinical application prospects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
GingerF应助假面绅士采纳,获得50
8秒前
竹鱼完成签到,获得积分10
11秒前
aDD完成签到,获得积分10
24秒前
29秒前
彭于晏应助zfr采纳,获得10
34秒前
fukase完成签到,获得积分10
35秒前
张志超发布了新的文献求助10
36秒前
37秒前
45秒前
Nature2025完成签到 ,获得积分10
51秒前
打打应助aDD采纳,获得10
54秒前
58秒前
1分钟前
SYJ完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
SYJ发布了新的文献求助30
1分钟前
1分钟前
小阿博完成签到,获得积分10
1分钟前
彭于晏应助llp采纳,获得10
1分钟前
1分钟前
1分钟前
不周发布了新的文献求助10
2分钟前
zhao完成签到 ,获得积分0
2分钟前
落水鎏情完成签到 ,获得积分10
2分钟前
Unfair完成签到,获得积分10
2分钟前
zfr完成签到,获得积分10
2分钟前
纯情的昊强完成签到,获得积分10
2分钟前
xxs完成签到 ,获得积分10
2分钟前
Rory完成签到 ,获得积分10
2分钟前
2分钟前
bkagyin应助合适怜阳采纳,获得10
2分钟前
2分钟前
llp完成签到,获得积分10
2分钟前
嘻嘻哈哈应助张志超采纳,获得10
2分钟前
llp发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253853
求助须知:如何正确求助?哪些是违规求助? 4417068
关于积分的说明 13750902
捐赠科研通 4289590
什么是DOI,文献DOI怎么找? 2353566
邀请新用户注册赠送积分活动 1350271
关于科研通互助平台的介绍 1310288