Multi-Dimensional Cascaded Net with Uncertain Probability Reduction for Abdominal Multi-Organ Segmentation in CT Sequences

分割 计算机科学 人工智能 增采样 掷骰子 推论 边界(拓扑) 模式识别(心理学) 计算机视觉 图像(数学) 数学 几何学 数学分析
作者
Chengkang Li,Yishen Mao,Yi Guo,Ji Li,Yuanyuan Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:221: 106887-106887 被引量:9
标识
DOI:10.1016/j.cmpb.2022.106887
摘要

Deep learning abdominal multi-organ segmentation provides preoperative guidance for abdominal surgery. However, due to the large volume of 3D CT sequences, the existing methods cannot balance complete semantic features and high-resolution detail information, which leads to uncertain, rough, and inaccurate segmentation, especially in small and irregular organs. In this paper, we propose a two-stage algorithm named multi-dimensional cascaded net (MDCNet) to solve the above problems and segment multi-organs in CT images, including the spleen, kidney, gallbladder, esophagus, liver, stomach, pancreas, and duodenum.MDCNet combines the powerful semantic encoder ability of a 3D net and the rich high-resolution information of a 2.5D net. In stage1, a prior-guided shallow-layer-enhanced 3D location net extracts entire semantic features from a downsampled CT volume to perform rough segmentation. Additionally, we use circular inference and parameter Dice loss to alleviate uncertain boundary. The inputs of stage2 are high-resolution slices, which are obtained by the original image and coarse segmentation of stage1. Stage2 offsets the details lost during downsampling, resulting in smooth and accurate refined contours. The 2.5D net from the axial, coronal, and sagittal views also compensates for the missing spatial information of a single view.The experiments on the two datasets both obtained the best performance, particularly a higher Dice on small gallbladders and irregular duodenums, which reached 0.85±0.12 and 0.77±0.07 respectively, increasing by 0.02 and 0.03 compared to the state-of-the-art method.Our method can extract all semantic and high-resolution detail information from a large-volume CT image. It reduces the boundary uncertainty while yielding smoother segmentation edges, indicating good clinical application prospects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoGuo完成签到,获得积分10
1秒前
吕敬瑶发布了新的文献求助10
1秒前
1秒前
2秒前
领导范儿应助zrl采纳,获得10
2秒前
俱乐部完成签到,获得积分10
2秒前
Orange应助包容的奇异果采纳,获得10
3秒前
茉莉是个饱饱完成签到,获得积分10
4秒前
FashionBoy应助不吃了采纳,获得10
5秒前
Ice完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
吕敬瑶完成签到,获得积分10
7秒前
8秒前
stone完成签到,获得积分10
8秒前
chinjaneking发布了新的文献求助10
10秒前
10秒前
10秒前
华仔应助yxc采纳,获得10
10秒前
11秒前
Hello应助YangLi采纳,获得10
11秒前
SciGPT应助yun采纳,获得10
11秒前
YS发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
思源应助Mc_Fan采纳,获得10
16秒前
zbm完成签到 ,获得积分10
16秒前
沉默的钵钵鸡完成签到,获得积分10
16秒前
18秒前
20秒前
甜心辣妹关注了科研通微信公众号
20秒前
red发布了新的文献求助10
21秒前
乐乐应助科学家采纳,获得10
21秒前
量子星尘发布了新的文献求助10
21秒前
不吃了发布了新的文献求助10
22秒前
向上的小马完成签到,获得积分10
23秒前
23秒前
yun发布了新的文献求助10
24秒前
night发布了新的文献求助10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858