Multi-Dimensional Cascaded Net with Uncertain Probability Reduction for Abdominal Multi-Organ Segmentation in CT Sequences

分割 计算机科学 人工智能 增采样 掷骰子 推论 边界(拓扑) 模式识别(心理学) 计算机视觉 图像(数学) 数学 几何学 数学分析
作者
Chengkang Li,Yishen Mao,Yi Guo,Ji Li,Yuanyuan Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:221: 106887-106887 被引量:9
标识
DOI:10.1016/j.cmpb.2022.106887
摘要

Deep learning abdominal multi-organ segmentation provides preoperative guidance for abdominal surgery. However, due to the large volume of 3D CT sequences, the existing methods cannot balance complete semantic features and high-resolution detail information, which leads to uncertain, rough, and inaccurate segmentation, especially in small and irregular organs. In this paper, we propose a two-stage algorithm named multi-dimensional cascaded net (MDCNet) to solve the above problems and segment multi-organs in CT images, including the spleen, kidney, gallbladder, esophagus, liver, stomach, pancreas, and duodenum.MDCNet combines the powerful semantic encoder ability of a 3D net and the rich high-resolution information of a 2.5D net. In stage1, a prior-guided shallow-layer-enhanced 3D location net extracts entire semantic features from a downsampled CT volume to perform rough segmentation. Additionally, we use circular inference and parameter Dice loss to alleviate uncertain boundary. The inputs of stage2 are high-resolution slices, which are obtained by the original image and coarse segmentation of stage1. Stage2 offsets the details lost during downsampling, resulting in smooth and accurate refined contours. The 2.5D net from the axial, coronal, and sagittal views also compensates for the missing spatial information of a single view.The experiments on the two datasets both obtained the best performance, particularly a higher Dice on small gallbladders and irregular duodenums, which reached 0.85±0.12 and 0.77±0.07 respectively, increasing by 0.02 and 0.03 compared to the state-of-the-art method.Our method can extract all semantic and high-resolution detail information from a large-volume CT image. It reduces the boundary uncertainty while yielding smoother segmentation edges, indicating good clinical application prospects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一把过发布了新的文献求助10
1秒前
1秒前
啊哈哈哈完成签到,获得积分10
1秒前
5AGAME发布了新的文献求助10
2秒前
Ray发布了新的文献求助10
2秒前
2秒前
Orange应助呼呼虫采纳,获得10
2秒前
aa完成签到 ,获得积分10
3秒前
干净的冷松完成签到,获得积分10
3秒前
1111完成签到,获得积分10
3秒前
ZG完成签到,获得积分10
3秒前
郭珺完成签到,获得积分10
3秒前
莎莎士比亚完成签到,获得积分10
3秒前
弓长发布了新的文献求助10
3秒前
科研牛马完成签到,获得积分10
4秒前
萱1988发布了新的文献求助10
5秒前
5秒前
xyf完成签到,获得积分10
5秒前
Engen发布了新的文献求助10
5秒前
Emilia完成签到,获得积分10
5秒前
6秒前
伶俐的书南完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
碳土不凡完成签到 ,获得积分10
6秒前
114555发布了新的文献求助10
7秒前
他方世界发布了新的文献求助10
7秒前
7秒前
啦啦啦完成签到,获得积分10
7秒前
迷路的晓旋完成签到,获得积分10
8秒前
禁止通行发布了新的文献求助10
8秒前
Ray完成签到,获得积分10
10秒前
fmd123完成签到,获得积分20
10秒前
我想吃薯条完成签到 ,获得积分10
10秒前
poppysss发布了新的文献求助10
11秒前
可爱的函函应助一把过采纳,获得10
11秒前
UPUP完成签到,获得积分10
12秒前
DDF完成签到 ,获得积分10
12秒前
13秒前
顾矜应助BenQiu采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582