HGNN+: General Hypergraph Neural Networks

超图 计算机科学 理论计算机科学 图形 数据类型 人工智能 数学 离散数学 程序设计语言
作者
Yue Gao,Yifan Feng,Shuyi Ji,Rongrong Ji
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (3): 3181-3199 被引量:343
标识
DOI:10.1109/tpami.2022.3182052
摘要

Graph Neural Networks have attracted increasing attention in recent years. However, existing GNN frameworks are deployed based upon simple graphs, which limits their applications in dealing with complex data correlation of multi-modal/multi-type data in practice. A few hypergraph-based methods have recently been proposed to address the problem of multi-modal/multi-type data correlation by directly concatenating the hypergraphs constructed from each single individual modality/type, which is difficult to learn an adaptive weight for each modality/type. In this paper, we extend the original conference version HGNN, and introduce a general high-order multi-modal/multi-type data correlation modeling framework called HGNN + to learn an optimal representation in a single hypergraph based framework. It is achieved by bridging multi-modal/multi-type data and hyperedge with hyperedge groups. Specifically, in our method, hyperedge groups are first constructed to represent latent high-order correlations in each specific modality/type with explicit or implicit graph structures. An adaptive hyperedge group fusion strategy is then used to effectively fuse the correlations from different modalities/types in a unified hypergraph. After that a new hypergraph convolution scheme performed in spatial domain is used to learn a general data representation for various tasks. We have evaluated this framework on several popular datasets and compared it with recent state-of-the-art methods. The comprehensive evaluations indicate that the proposed HGNN + framework can consistently outperform existing methods with a significant margin, especially when modeling implicit data correlations. We also release a toolbox called THU-DeepHypergraph for the proposed framework, which can be used for various of applications, such as data classification, retrieval and recommendation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cathyeileen完成签到,获得积分10
刚刚
2秒前
哈哈发布了新的文献求助10
3秒前
qccccc发布了新的文献求助10
3秒前
好了完成签到,获得积分10
4秒前
Dxy-TOFA完成签到,获得积分10
4秒前
5秒前
6秒前
养猪大户完成签到 ,获得积分10
6秒前
张来完成签到 ,获得积分10
7秒前
8秒前
Akim应助哈哈采纳,获得10
9秒前
Liuunong关注了科研通微信公众号
9秒前
栗园完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
yaosichao完成签到,获得积分10
10秒前
气球样变综合征完成签到,获得积分10
12秒前
张志超发布了新的文献求助10
12秒前
传奇3应助narcissus采纳,获得10
13秒前
satori完成签到,获得积分10
14秒前
深情安青应助dwd采纳,获得10
15秒前
lhy发布了新的文献求助10
15秒前
15秒前
16秒前
英姑应助健忘的夜阑采纳,获得10
16秒前
Hello应助keyanren_小庆采纳,获得10
16秒前
16秒前
17秒前
传奇3应助vuig采纳,获得10
18秒前
Ava应助科研小白采纳,获得10
18秒前
fmwang完成签到,获得积分10
18秒前
哭泣的吐司完成签到,获得积分10
19秒前
渥鸡蛋完成签到 ,获得积分10
19秒前
灵巧夏彤完成签到 ,获得积分10
19秒前
19秒前
Provence发布了新的文献求助10
20秒前
21秒前
21秒前
量子星尘发布了新的文献求助10
24秒前
jtksbf完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646438
求助须知:如何正确求助?哪些是违规求助? 4771331
关于积分的说明 15034955
捐赠科研通 4805240
什么是DOI,文献DOI怎么找? 2569540
邀请新用户注册赠送积分活动 1526547
关于科研通互助平台的介绍 1485858