HGNN+: General Hypergraph Neural Networks

超图 计算机科学 理论计算机科学 图形 数据类型 人工智能 数学 离散数学 程序设计语言
作者
Yue Gao,Yifan Feng,Shuyi Ji,Rongrong Ji
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (3): 3181-3199 被引量:172
标识
DOI:10.1109/tpami.2022.3182052
摘要

Graph Neural Networks have attracted increasing attention in recent years. However, existing GNN frameworks are deployed based upon simple graphs, which limits their applications in dealing with complex data correlation of multi-modal/multi-type data in practice. A few hypergraph-based methods have recently been proposed to address the problem of multi-modal/multi-type data correlation by directly concatenating the hypergraphs constructed from each single individual modality/type, which is difficult to learn an adaptive weight for each modality/type. In this paper, we extend the original conference version HGNN, and introduce a general high-order multi-modal/multi-type data correlation modeling framework called HGNN + to learn an optimal representation in a single hypergraph based framework. It is achieved by bridging multi-modal/multi-type data and hyperedge with hyperedge groups. Specifically, in our method, hyperedge groups are first constructed to represent latent high-order correlations in each specific modality/type with explicit or implicit graph structures. An adaptive hyperedge group fusion strategy is then used to effectively fuse the correlations from different modalities/types in a unified hypergraph. After that a new hypergraph convolution scheme performed in spatial domain is used to learn a general data representation for various tasks. We have evaluated this framework on several popular datasets and compared it with recent state-of-the-art methods. The comprehensive evaluations indicate that the proposed HGNN + framework can consistently outperform existing methods with a significant margin, especially when modeling implicit data correlations. We also release a toolbox called THU-DeepHypergraph for the proposed framework, which can be used for various of applications, such as data classification, retrieval and recommendation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韭黄完成签到,获得积分20
1秒前
1秒前
谨慎的凝丝完成签到,获得积分10
3秒前
南北完成签到 ,获得积分10
4秒前
勇往直前完成签到,获得积分10
4秒前
lixiang完成签到 ,获得积分10
4秒前
华夫饼完成签到 ,获得积分10
6秒前
李子木关注了科研通微信公众号
7秒前
hdc12138完成签到,获得积分10
7秒前
李健的小迷弟应助hehe采纳,获得10
11秒前
少吃一口完成签到,获得积分10
11秒前
忐忑的天真完成签到 ,获得积分10
12秒前
凡事发生必有利于我完成签到,获得积分10
14秒前
小知了完成签到,获得积分10
16秒前
鳗鱼落雁完成签到 ,获得积分10
17秒前
火星上雁枫完成签到 ,获得积分10
18秒前
19秒前
April完成签到,获得积分10
20秒前
小文殊完成签到 ,获得积分10
20秒前
菠萝吹雪完成签到,获得积分10
21秒前
hehe发布了新的文献求助10
23秒前
荀煜祺发布了新的文献求助10
23秒前
安澜完成签到,获得积分10
23秒前
研友_nPxRRn完成签到,获得积分10
23秒前
无花果应助科研通管家采纳,获得10
24秒前
科研韭菜完成签到 ,获得积分10
25秒前
顺心紫南完成签到,获得积分10
25秒前
啵妞完成签到 ,获得积分10
26秒前
ClaudiaCY完成签到,获得积分10
27秒前
罗氏集团完成签到,获得积分10
27秒前
28秒前
祝你勇敢完成签到 ,获得积分10
29秒前
快乐大炮完成签到 ,获得积分10
29秒前
聪慧的从雪完成签到 ,获得积分10
30秒前
量子星尘发布了新的文献求助10
31秒前
wnll发布了新的文献求助10
33秒前
33秒前
秦磊发布了新的文献求助10
34秒前
sscss完成签到,获得积分10
42秒前
无脚鸟完成签到,获得积分10
43秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008834
求助须知:如何正确求助?哪些是违规求助? 3548485
关于积分的说明 11298899
捐赠科研通 3283114
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811220