HGNN+: General Hypergraph Neural Networks

超图 计算机科学 理论计算机科学 图形 数据类型 人工智能 数学 离散数学 程序设计语言
作者
Yue Gao,Yifan Feng,Shuyi Ji,Rongrong Ji
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (3): 3181-3199 被引量:211
标识
DOI:10.1109/tpami.2022.3182052
摘要

Graph Neural Networks have attracted increasing attention in recent years. However, existing GNN frameworks are deployed based upon simple graphs, which limits their applications in dealing with complex data correlation of multi-modal/multi-type data in practice. A few hypergraph-based methods have recently been proposed to address the problem of multi-modal/multi-type data correlation by directly concatenating the hypergraphs constructed from each single individual modality/type, which is difficult to learn an adaptive weight for each modality/type. In this paper, we extend the original conference version HGNN, and introduce a general high-order multi-modal/multi-type data correlation modeling framework called HGNN + to learn an optimal representation in a single hypergraph based framework. It is achieved by bridging multi-modal/multi-type data and hyperedge with hyperedge groups. Specifically, in our method, hyperedge groups are first constructed to represent latent high-order correlations in each specific modality/type with explicit or implicit graph structures. An adaptive hyperedge group fusion strategy is then used to effectively fuse the correlations from different modalities/types in a unified hypergraph. After that a new hypergraph convolution scheme performed in spatial domain is used to learn a general data representation for various tasks. We have evaluated this framework on several popular datasets and compared it with recent state-of-the-art methods. The comprehensive evaluations indicate that the proposed HGNN + framework can consistently outperform existing methods with a significant margin, especially when modeling implicit data correlations. We also release a toolbox called THU-DeepHypergraph for the proposed framework, which can be used for various of applications, such as data classification, retrieval and recommendation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llxiaomianyang完成签到,获得积分10
1秒前
1秒前
星辰大海应助七七采纳,获得10
2秒前
2秒前
拼搏惜蕊发布了新的文献求助10
2秒前
李萌发布了新的文献求助10
2秒前
浩二发布了新的文献求助10
4秒前
浩二发布了新的文献求助10
4秒前
CipherSage应助端庄向雁采纳,获得10
4秒前
muni应助吴豁采纳,获得10
5秒前
科研通AI6应助俊逸的难破采纳,获得10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
CC完成签到,获得积分10
5秒前
poletar发布了新的文献求助10
6秒前
qaz发布了新的文献求助10
6秒前
Tomsen发布了新的文献求助10
6秒前
7秒前
好怀念WE完成签到,获得积分20
7秒前
7秒前
8秒前
科研通AI6应助学术悍匪采纳,获得10
9秒前
李健的小迷弟应助李萌采纳,获得10
9秒前
han发布了新的文献求助10
11秒前
11秒前
WU完成签到,获得积分10
12秒前
mqthhh发布了新的文献求助10
12秒前
多多关注了科研通微信公众号
13秒前
今后应助猪猪hero采纳,获得30
13秒前
sunshine完成签到,获得积分10
14秒前
14秒前
小蘑菇应助kyhappy_2002采纳,获得10
15秒前
CodeCraft应助keweic采纳,获得10
15秒前
黄学无发布了新的文献求助10
15秒前
15秒前
Youngcy应助lmg采纳,获得10
16秒前
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942644
求助须知:如何正确求助?哪些是违规求助? 4208241
关于积分的说明 13081377
捐赠科研通 3987311
什么是DOI,文献DOI怎么找? 2183028
邀请新用户注册赠送积分活动 1198648
关于科研通互助平台的介绍 1111020