HGNN$^+$: General Hypergraph Neural Networks

超图 计算机科学 理论计算机科学 图形 代表(政治) 人工智能 数学 离散数学 政治 政治学 法学
作者
Yue Gao,Yifan Feng,Shuyi Ji,Rongrong Ji
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18 被引量:99
标识
DOI:10.1109/tpami.2022.3182052
摘要

Graph Neural Networks have attracted increasing attention in recent years. However, existing GNN frameworks are deployed based upon simple graphs, which limits their applications in dealing with complex data correlation of multi-modal/multi-type data in practice. A few hypergraph-based methods have recently been proposed to address the problem of multi-modal/multi-type data correlation by directly concatenating the hypergraphs constructed from each single individual modality/type, which is difficult to learn an adaptive weight for each modality/type. In this paper, we extend the original conference version HGNN, and introduce a general high-order multi-modal/multi-type data correlation modeling framework called HGNN + to learn an optimal representation in a single hypergraph based framework. It is achieved by bridging multi-modal/multi-type data and hyperedge with hyperedge groups. Specifically, in our method, hyperedge groups are first constructed to represent latent high-order correlations in each specific modality/type with explicit or implicit graph structures. An adaptive hyperedge group fusion strategy is then used to effectively fuse the correlations from different modalities/types in a unified hypergraph. After that a new hypergraph convolution scheme performed in spatial domain is used to learn a general data representation for various tasks. We have evaluated this framework on several popular datasets and compared it with recent state-of-the-art methods. The comprehensive evaluations indicate that the proposed HGNN + framework can consistently outperform existing methods with a significant margin, especially when modeling implicit data correlations. We also release a toolbox called THU-DeepHypergraph for the proposed framework, which can be used for various of applications, such as data classification, retrieval and recommendation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助汤圆采纳,获得10
1秒前
没得发布了新的文献求助10
1秒前
1秒前
Anar发布了新的文献求助10
2秒前
naotbald发布了新的文献求助30
2秒前
2秒前
xwtlbq发布了新的文献求助10
3秒前
凶狠的尔蓉应助念旧采纳,获得10
4秒前
善学以致用应助li采纳,获得10
5秒前
5秒前
5秒前
6秒前
鑫叶完成签到,获得积分10
6秒前
科研通AI2S应助lilyyan采纳,获得10
7秒前
动听的觅波完成签到,获得积分10
7秒前
活力寒梅发布了新的文献求助10
8秒前
SciGPT应助kk采纳,获得10
8秒前
CipherSage应助小王采纳,获得10
8秒前
renyun发布了新的文献求助10
8秒前
9秒前
小陆发布了新的文献求助10
9秒前
10秒前
希望天下0贩的0应助yoyo采纳,获得10
11秒前
阳光刺眼发布了新的文献求助10
11秒前
13秒前
先天牛马发布了新的文献求助10
14秒前
给一完成签到,获得积分10
14秒前
满意的夜柳完成签到,获得积分10
14秒前
naotbald完成签到,获得积分10
15秒前
15秒前
ccc发布了新的文献求助10
16秒前
17秒前
儒雅的若完成签到 ,获得积分10
18秒前
无情的匪完成签到 ,获得积分10
18秒前
18秒前
小蘑菇应助静静子采纳,获得10
18秒前
研友_LpvElZ完成签到,获得积分10
19秒前
小逸发布了新的文献求助20
19秒前
19秒前
脑洞疼应助夜已深采纳,获得10
19秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufen 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
Development of a new synthetic process for the synthesis of (S)-methadone and (S)- and (R)-isomethadone as NMDA receptor antagonists for the treatment of depression 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3094778
求助须知:如何正确求助?哪些是违规求助? 2746557
关于积分的说明 7590852
捐赠科研通 2397958
什么是DOI,文献DOI怎么找? 1272269
科研通“疑难数据库(出版商)”最低求助积分说明 615347
版权声明 598879