Faster-RCNN based intelligent detection and localization of dental caries

牙科 计算机科学 人工智能 医学
作者
Yuang Zhu,Tongkai Xu,Li Peng,Yin Cao,Xiaoting Zhao,Suying Li,Yiming Zhao,Fanchao Meng,Jinmin Ding,Sheng Liang
出处
期刊:Displays [Elsevier]
卷期号:74: 102201-102201 被引量:28
标识
DOI:10.1016/j.displa.2022.102201
摘要

• The object detection algorithm of Faster-RCNN was used to automatically determine the location of caries in periapical films, which solved the limitation of current AI application in caries assisted diagnosis. • The ResNet50, which is with the ability to solve network degradation, is used for feature extraction of Faster-RCNN. And the pre-training network is loaded simultaneously to improve the detection accuracy of the network. • The deploying of caries-detection model on the server and the building of caries-detection online platform endows the whole work with higher clinical significance. This work can also provide references for AI-assisted diagnosis in other medical fields. The use of AI (artificial intelligence) for auxiliary diagnosis of medical images is a current development trend, where the automatic recognition of lesion location is a key problem in AI-assisted diagnosis of medical images. In the past, most of the studies on AI-assisted diagnosis of dental caries based on X-ray image primarily focused on the classification of abnormalities rather than the detection and localization of dental caries, which is not conducive to expanding the clinical application of this technique. Accordingly, in this work, an AI-assisted diagnosis method is developed that employs Faster-RCNN to predict the number and locations of caries lesions based on periapical films. To support the application of this diagnosis method, an open Web platform for detection of dental caries is constructed in the following way: First, clinical samples acquired by professional doctors are collected and labeled to build the sample space and label space. Then, a caries detection model is built through training and testing on samples. Finally, the contents of Web platform are set up, the layout is configured through HTML/CSS programming, and the model is deployed on Alibaba cloud server using the Flask framework. After the diagnosis platform is put into operation, doctors and patients can upload the medical images to be tested onto the website of platform, where test results can be obtained. These test results can help doctors diagnose the diseases with higher efficiency and precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单千秋发布了新的文献求助10
1秒前
无限的山水完成签到,获得积分10
2秒前
科研小白完成签到,获得积分10
3秒前
c_123完成签到 ,获得积分10
3秒前
汤锐完成签到,获得积分10
4秒前
大个应助Sky我的小清新采纳,获得10
4秒前
tinatian270完成签到,获得积分10
5秒前
秦磊完成签到,获得积分10
6秒前
轻松思枫完成签到 ,获得积分10
6秒前
tianji完成签到,获得积分10
7秒前
7秒前
糖果呖咕呖咕完成签到,获得积分10
7秒前
周涛完成签到,获得积分10
7秒前
xdf发布了新的文献求助10
8秒前
20240901完成签到,获得积分10
8秒前
柑橘完成签到,获得积分10
9秒前
kiska完成签到,获得积分10
9秒前
老德完成签到,获得积分10
9秒前
9秒前
chenhd完成签到,获得积分10
9秒前
ding应助bingbing采纳,获得10
10秒前
10秒前
蒸馏水完成签到,获得积分10
11秒前
RHR发布了新的文献求助10
13秒前
貔貅完成签到,获得积分10
13秒前
不辣的完成签到 ,获得积分10
13秒前
黄沙发布了新的文献求助10
13秒前
科研通AI2S应助宇儿采纳,获得10
14秒前
红红火火恍恍惚惚完成签到,获得积分10
14秒前
苹果发布了新的文献求助10
15秒前
麦乐酷发布了新的文献求助10
16秒前
ZZ完成签到,获得积分10
16秒前
16秒前
16秒前
Bminor完成签到,获得积分10
17秒前
17秒前
17秒前
drtianyunhong完成签到,获得积分10
18秒前
kun完成签到 ,获得积分10
18秒前
18秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180081
求助须知:如何正确求助?哪些是违规求助? 2830441
关于积分的说明 7977245
捐赠科研通 2492017
什么是DOI,文献DOI怎么找? 1329172
科研通“疑难数据库(出版商)”最低求助积分说明 635669
版权声明 602954