Faster-RCNN based intelligent detection and localization of dental caries

牙科 计算机科学 人工智能 医学
作者
Yuang Zhu,Tongkai Xu,Li Peng,Yin Cao,Xiaoting Zhao,Suying Li,Yiming Zhao,Fanchao Meng,Jinmin Ding,Sheng Liang
出处
期刊:Displays [Elsevier]
卷期号:74: 102201-102201 被引量:28
标识
DOI:10.1016/j.displa.2022.102201
摘要

• The object detection algorithm of Faster-RCNN was used to automatically determine the location of caries in periapical films, which solved the limitation of current AI application in caries assisted diagnosis. • The ResNet50, which is with the ability to solve network degradation, is used for feature extraction of Faster-RCNN. And the pre-training network is loaded simultaneously to improve the detection accuracy of the network. • The deploying of caries-detection model on the server and the building of caries-detection online platform endows the whole work with higher clinical significance. This work can also provide references for AI-assisted diagnosis in other medical fields. The use of AI (artificial intelligence) for auxiliary diagnosis of medical images is a current development trend, where the automatic recognition of lesion location is a key problem in AI-assisted diagnosis of medical images. In the past, most of the studies on AI-assisted diagnosis of dental caries based on X-ray image primarily focused on the classification of abnormalities rather than the detection and localization of dental caries, which is not conducive to expanding the clinical application of this technique. Accordingly, in this work, an AI-assisted diagnosis method is developed that employs Faster-RCNN to predict the number and locations of caries lesions based on periapical films. To support the application of this diagnosis method, an open Web platform for detection of dental caries is constructed in the following way: First, clinical samples acquired by professional doctors are collected and labeled to build the sample space and label space. Then, a caries detection model is built through training and testing on samples. Finally, the contents of Web platform are set up, the layout is configured through HTML/CSS programming, and the model is deployed on Alibaba cloud server using the Flask framework. After the diagnosis platform is put into operation, doctors and patients can upload the medical images to be tested onto the website of platform, where test results can be obtained. These test results can help doctors diagnose the diseases with higher efficiency and precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jogrgr发布了新的文献求助10
刚刚
lll发布了新的文献求助10
1秒前
生气的鸡蛋完成签到,获得积分10
1秒前
qi发布了新的文献求助10
1秒前
zino发布了新的文献求助10
2秒前
2秒前
2秒前
stt发布了新的文献求助10
3秒前
小蘑菇应助杏花饼采纳,获得10
3秒前
海棠yiyi发布了新的文献求助50
3秒前
camellia完成签到 ,获得积分10
4秒前
4秒前
4秒前
田様应助柠木采纳,获得10
4秒前
4秒前
研友_VZG7GZ应助生气的鸡蛋采纳,获得10
5秒前
5秒前
5秒前
威武的万仇完成签到 ,获得积分10
6秒前
迷路的水彤完成签到 ,获得积分10
6秒前
千里发布了新的文献求助10
6秒前
jogrgr完成签到,获得积分10
6秒前
夯大力完成签到,获得积分10
6秒前
啊娴仔完成签到,获得积分10
7秒前
7秒前
7秒前
韭菜发布了新的文献求助10
7秒前
Harlotte发布了新的文献求助20
8秒前
思源应助系统提示采纳,获得10
8秒前
蜡笔发布了新的文献求助30
8秒前
宋嬴一发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
HYLynn应助hetao286采纳,获得10
10秒前
12秒前
12秒前
夯大力发布了新的文献求助10
12秒前
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740