材料科学
成核
石墨烯
阳极
纳米片
锂(药物)
纳米技术
过电位
化学工程
枝晶(数学)
电极
电化学
医学
数学
工程类
内分泌学
物理化学
有机化学
化学
几何学
作者
Shang‐Qi Li,Ling Zhang,Tingting Liu,Yao‐Wen Zhang,Chaofei Guo,Yong Wang,Fei‐Hu Du
标识
DOI:10.1002/adma.202201801
摘要
Uncontrolled lithium dendrite growth and dramatic volume change during cycling have long been severely impeding the practical applications of Li metal as the ultimate anode. In this work, ultrathin MgF2 nanosheets encapsulated inside nitrogen-doped graphene-like hollow nanospheres (MgF2 NSs@NGHSs) are ingeniously fabricated to address these problems by a perfect combination of atomic layer deposition and chemical vapor deposition. The uniform and continuous Li-Mg solid-solution inner layer formed by the MgF2 nanosheets can reduce the nucleation overpotential and induce selective deposition of Li into the cavities of the NGHSs. Furthermore, the Li deposition behavior and mechanism of the hybrid host are comprehensively explored by in situ optical microscopy at the macroscopic level, in situ transmission electron microscopy at the microscopic level, and theoretical calculations at the atomic level, respectively. Benefiting from a synergistic modulation strategy of nanosheet seed-induced nucleation and Li-confined growth, the designed composite demonstrates an endurance of 590 cycles for asymmetric cells and a lifespan over 1330 h for corresponding symmetric cells. When applied in LiFePO4 full cells, it provides a reversible capacity of 90.6 mAh g-1 after 1000 cycles at 1 C.
科研通智能强力驱动
Strongly Powered by AbleSci AI