纳米孔
材料科学
阳极氧化
光子学
光电子学
检出限
纳米结构
纳米探针
纳米技术
光学
铝
纳米颗粒
化学
色谱法
物理
冶金
作者
Yuting Chen,Abel Santos,Ye Wang,Tushar Kumeria,Changhai Wang,Junsheng Li,Dušan Lošić
出处
期刊:Nanoscale
[The Royal Society of Chemistry]
日期:2015-01-01
卷期号:7 (17): 7770-7779
被引量:53
摘要
Herein, we present a systematic study on the development, optical optimization and sensing applicability of colored photonic coatings based on nanoporous anodic alumina films grown on aluminum substrates. These optical nanostructures, so-called distributed Bragg reflectors (NAA-DBRs), are fabricated by galvanostatic pulse anodization process, in which the current density is altered in a periodic manner in order to engineer the effective medium of the resulting photonic coatings. As-prepared NAA-DBR photonic coatings present brilliant interference colors on the surface of aluminum, which can be tuned at will within the UV-visible spectrum by means of the anodization profile. A broad library of NAA-DBR colors is produced by means of different anodization profiles. Then, the effective medium of these NAA-DBR photonic coatings is systematically assessed in terms of optical sensitivity, low limit of detection and linearity by reflectometric interference spectroscopy (RIfS) in order to optimize their nanoporous structure toward optical sensors with enhanced sensing performance. Finally, we demonstrate the applicability of these photonic nanostructures as optical platforms by selectively detecting gold(III) ions in aqueous solutions. The obtained results reveal that optimized NAA-DBR photonic coatings can achieve an outstanding sensing performance for gold(III) ions, with a sensitivity of 22.16 nm μM−1, a low limit of detection of 0.156 μM (i.e. 30.7 ppb) and excellent linearity within the working range (0.9983).
科研通智能强力驱动
Strongly Powered by AbleSci AI