单域抗体
计算生物学
表位
噬菌体展示
重组DNA
蛋白质工程
抗原
抗体
生物
化学
分子生物学
生物化学
基因
遗传学
酶
作者
Peter C. Fridy,Yinyin Li,Sarah Keegan,Mary Kay Thompson,Ilona Nudelman,Johannes F. Scheid,Marlene Oeffinger,Michel C. Nussenzweig,David Fenyö,Brian T. Chait,Michael P. Rout
出处
期刊:Nature Methods
[Springer Nature]
日期:2014-11-02
卷期号:11 (12): 1253-1260
被引量:443
摘要
This paper presents an efficient method for generating nanobodies with high affinity and high specificity. In addition, a collection of nanobodies specific for GFP or mCherry that resulted from this work is described. Nanobodies are single-domain antibodies derived from the variable regions of Camelidae atypical immunoglobulins. They show promise as high-affinity reagents for research, diagnostics and therapeutics owing to their high specificity, small size (∼15 kDa) and straightforward bacterial expression. However, identification of repertoires with sufficiently high affinity has proven time consuming and difficult, hampering nanobody implementation. Our approach generates large repertoires of readily expressible recombinant nanobodies with high affinities and specificities against a given antigen. We demonstrate the efficacy of this approach through the production of large repertoires of nanobodies against two antigens, GFP and mCherry, with Kd values into the subnanomolar range. After mapping diverse epitopes on GFP, we were also able to design ultrahigh-affinity dimeric nanobodies with Kd values as low as ∼30 pM. The approach presented here is well suited for the routine production of high-affinity capture reagents for various biomedical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI