奇异值
正规化(语言学)
矩阵范数
秩(图论)
数学
正多边形
凸优化
矩阵完成
应用数学
规范(哲学)
计算机科学
基质(化学分析)
算法
低秩近似
数学优化
组合数学
纯数学
人工智能
张量(固有定义)
物理
几何学
特征向量
复合材料
高斯分布
量子力学
材料科学
法学
政治学
作者
Debing Zhang,Yao Hu,Jieping Ye,Xuelong Li,Xiaofei He
出处
期刊:Computer Vision and Pattern Recognition
日期:2012-06-01
被引量:135
标识
DOI:10.1109/cvpr.2012.6247927
摘要
Estimating missing values in visual data is a challenging problem in computer vision, which can be considered as a low rank matrix approximation problem. Most of the recent studies use the nuclear norm as a convex relaxation of the rank operator. However, by minimizing the nuclear norm, all the singular values are simultaneously minimized, and thus the rank can not be well approximated in practice. In this paper, we propose a novel matrix completion algorithm based on the Truncated Nuclear Norm Regularization (TNNR) by only minimizing the smallest N-r singular values, where N is the number of singular values and r is the rank of the matrix. In this way, the rank of the matrix can be better approximated than the nuclear norm. We further develop an efficient iterative procedure to solve the optimization problem by using the alternating direction method of multipliers and the accelerated proximal gradient line search method. Experimental results in a wide range of applications demonstrate the effectiveness of our proposed approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI