Video denoising by sparse 3D transform-domain collaborative filtering

阈值 降噪 计算机科学 稀疏逼近 视频去噪 人工智能 维纳滤波器 块(置换群论) 协同过滤 模式识别(心理学) 算法 计算机视觉 数学 图像(数学) 对象(语法) 视频跟踪 推荐系统 机器学习 多视点视频编码 几何学
作者
Kostadin Dabov,Alessandro Foi,Karen Egiazarian
出处
期刊:European Signal Processing Conference 卷期号:: 145-149 被引量:386
标识
DOI:10.5281/zenodo.40233
摘要

We propose an effective video denoising method based on highly sparse signal representation in local 3D transform domain. A noisy video is processed in blockwise manner and for each processed block we form a 3D data array that we call “group” by stacking together blocks found similar to the currently processed one. This grouping is realized as a spatio-temporal predictive-search block-matching, similar to techniques used for motion estimation. Each formed 3D group is filtered by a 3D transform-domain shrinkage (hard-thresholding and Wiener filtering), the result of which are estimates of all grouped blocks. This filtering — that we term “collaborative filtering” — exploits the correlation between grouped blocks and the corresponding highly sparse representation of the true signal in the transform domain. Since, in general, the obtained block estimates are mutually overlapping, we aggregate them by a weighted average in order to form a non-redundant estimate of the video. Significant improvement of this approach is achieved by using a two-step algorithm where an intermediate estimate is produced by grouping and collaborative hard-thresholding and then used both for improving the grouping and for applying collaborative empirical Wiener filtering. We develop an efficient realization of this video denoising algorithm. The experimental results show that at reasonable computational cost it achieves state-of-the-art denoising performance in terms of both peak signal-to-noise ratio and subjective visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孙小头完成签到 ,获得积分10
2秒前
wjw发布了新的文献求助10
5秒前
含糊的尔槐完成签到,获得积分10
5秒前
Ava应助名天采纳,获得10
5秒前
8秒前
9秒前
cxwcn完成签到 ,获得积分10
11秒前
14秒前
14秒前
轩风发布了新的文献求助10
14秒前
快乐的风发布了新的文献求助10
15秒前
画清风完成签到,获得积分10
15秒前
15秒前
bnjay发布了新的文献求助50
16秒前
酷波er应助LANER采纳,获得10
16秒前
冷傲的xu完成签到,获得积分10
18秒前
19秒前
20秒前
Ava应助zzm采纳,获得10
21秒前
22秒前
zbw完成签到 ,获得积分20
22秒前
Lyla完成签到,获得积分10
22秒前
拼搏的败完成签到 ,获得积分10
23秒前
chf102完成签到,获得积分10
24秒前
快乐的风完成签到,获得积分20
25秒前
单薄的西装应助Abdory采纳,获得10
25秒前
25秒前
26秒前
26秒前
Lyla发布了新的文献求助10
26秒前
充电宝应助常乐的大宝剑采纳,获得10
27秒前
冷傲的夜香发布了新的文献求助200
27秒前
耘耔发布了新的文献求助30
27秒前
Babara完成签到,获得积分20
27秒前
搬砖的冰美式完成签到,获得积分10
28秒前
科研通AI2S应助婌旎采纳,获得10
28秒前
摩尔曼斯克港完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500590
关于积分的说明 11100070
捐赠科研通 3231090
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719