Abstract P2-08-12: Integration of tumor size and grade with the breast cancer index (BCI) for prediction of distant recurrence in hormone receptor-positive breast cancer with 1-3 positive lymph nodes

医学 乳腺癌 危险系数 内科学 肿瘤科 淋巴结 癌症 淋巴 置信区间 病理
作者
Ivana Šestak,Y Zhang,Brock E. Schroeder,Mitch Dowsett,DC Sgroi,Jack Cuzick,CA Schnabel
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:76 (4_Supplement): P2-12 被引量:1
标识
DOI:10.1158/1538-7445.sabcs15-p2-08-12
摘要

Abstract Background: BCI is a genomic signature (Molecular Grade Index (MGI) and HOXB13/IL17BR (H/I)) that significantly predicts risk of distant recurrence (DR) in hormonal receptor-positive, lymph node negative (LN-) breast cancer. As previously shown in the TransATAC and MA.14 studies, BCI was also prognostic for DR in lymph node-positive (LN+) patients. Here, a distinct BCI model that integrates tumor size and grade was evaluated for prediction of DR in women with 1-3 lymph node positive disease. Methods: 219 primary tumor samples from hormonal receptor-positive patients with 1-3 positive lymph nodes treated with 5 years of tamoxifen or anastrozole were examined. Women with four or more positive lymph nodes were excluded. BCI was combined with tumour size and grade into a comprehensive risk score, BCIN+. Kaplan-Meier (KM) estimates of 10 year DR and hazard ratios (HR) and 95% confidence intervals (CI) were estimated. Change in likelihood ratio 2 (LR-2) values were used to measure prognostic information of each variable alone or combined in new score. New cutpoints for low versus high risk groups for the new model were determined to ensure the low risk patients had minimal 10-year residual disease. Results: In 219 LN+ patients, BCI alone provided substantial additional prognostic information to tumor size (LR-2=11.83, P=0.0006) and grade (LR-2=8.33, P=0.004). Both clinical variables provided additional significant prognostic information to BCI alone (BCI alone: LR-2=9.59, P=0.0004; T: LR-2=7.09, P=0.008; G: LR-2=27.59, P<0.0001). Integration of tumor size and grade with BCI (BCIN+) provided additional highly significant prognostic information compared to BCI alone (Interquartile HR=3.15 [95% CI: 1.54-6.04]; LR-2=33.89, P<0.0001). A cut-point for a very low risk group in this LN+ population was determined, and included 55 (25%) women with no DR within 10 years. In contrast, 51 (31.1%) women developed a DR in the high risk group (N=164). 10-year DR risk for those in the high risk group was 35.4% (95% CI 28.0-44.1%). Discussion: Integration of tumor size and grade significantly enhanced the prognostic ability of BCI to predict 10 year DR risk in hormonal receptor-positive patients with 1-3 positive nodes. A significant number of patients have been identified to have a very low 10-year risk for DR, who may choose to safely forego unnecessary adjuvant chemotherapy or extended adjuvant endocrine therapy. Validation of BCIN+ in other datasets is ongoing. Citation Format: Sestak I, Zhang Y, Schroeder B, Dowsett M, Sgroi D, Cuzick J, Schnabel CA. Integration of tumor size and grade with the breast cancer index (BCI) for prediction of distant recurrence in hormone receptor-positive breast cancer with 1-3 positive lymph nodes. [abstract]. In: Proceedings of the Thirty-Eighth Annual CTRC-AACR San Antonio Breast Cancer Symposium: 2015 Dec 8-12; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2016;76(4 Suppl):Abstract nr P2-08-12.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力的香芦完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
2秒前
轨迹应助77采纳,获得20
5秒前
Tbin完成签到,获得积分10
5秒前
gulin完成签到,获得积分10
6秒前
huahua完成签到 ,获得积分10
7秒前
研友_VZGVzn完成签到,获得积分10
13秒前
随随完成签到 ,获得积分10
14秒前
zouni完成签到,获得积分10
16秒前
九月完成签到,获得积分10
16秒前
不秃燃的小老弟完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
Sandy发布了新的文献求助10
21秒前
22秒前
张晨完成签到 ,获得积分10
22秒前
Clifton完成签到 ,获得积分10
23秒前
邓大瓜完成签到,获得积分10
23秒前
Asumita完成签到,获得积分10
23秒前
26秒前
DrPika完成签到,获得积分10
28秒前
efengmo完成签到,获得积分10
30秒前
Vegeta完成签到 ,获得积分10
32秒前
冷酷夏真完成签到 ,获得积分10
34秒前
Akim应助历史真相采纳,获得10
35秒前
小事完成签到 ,获得积分10
36秒前
量子星尘发布了新的文献求助10
37秒前
犹豫的雨柏完成签到,获得积分10
38秒前
GXW完成签到,获得积分10
38秒前
Qian完成签到,获得积分10
39秒前
39秒前
11完成签到,获得积分10
41秒前
Astra完成签到,获得积分10
42秒前
害怕的冰颜完成签到 ,获得积分10
44秒前
都都完成签到 ,获得积分10
46秒前
Loey完成签到,获得积分10
46秒前
wuju完成签到,获得积分10
48秒前
49秒前
spicyfish完成签到,获得积分10
50秒前
勤奋的花卷完成签到 ,获得积分10
50秒前
HopeLee完成签到,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869297
关于积分的说明 15108591
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536417
关于科研通互助平台的介绍 1494839