Valid Probabilistic Predictions for Ginseng with Venn Machines Using Electronic Nose

Softmax函数 维恩图 概率逻辑 支持向量机 电子鼻 人工智能 机器学习 计算机科学 概率分类 朴素贝叶斯分类器 模式识别(心理学) 数据挖掘 数学 人工神经网络 数学教育
作者
You Wang,Jiacheng Miao,Xiaofeng Lyu,Linfeng Liu,Zhiyuan Luo,Guang Li
出处
期刊:Sensors [MDPI AG]
卷期号:16 (7): 1088-1088 被引量:4
标识
DOI:10.3390/s16071088
摘要

In the application of electronic noses (E-noses), probabilistic prediction is a good way to estimate how confident we are about our prediction. In this work, a homemade E-nose system embedded with 16 metal-oxide semi-conductive gas sensors was used to discriminate nine kinds of ginsengs of different species or production places. A flexible machine learning framework, Venn machine (VM) was introduced to make probabilistic predictions for each prediction. Three Venn predictors were developed based on three classical probabilistic prediction methods (Platt's method, Softmax regression and Naive Bayes). Three Venn predictors and three classical probabilistic prediction methods were compared in aspect of classification rate and especially the validity of estimated probability. A best classification rate of 88.57% was achieved with Platt's method in offline mode, and the classification rate of VM-SVM (Venn machine based on Support Vector Machine) was 86.35%, just 2.22% lower. The validity of Venn predictors performed better than that of corresponding classical probabilistic prediction methods. The validity of VM-SVM was superior to the other methods. The results demonstrated that Venn machine is a flexible tool to make precise and valid probabilistic prediction in the application of E-nose, and VM-SVM achieved the best performance for the probabilistic prediction of ginseng samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chi发布了新的文献求助10
刚刚
刚刚
一一完成签到,获得积分10
1秒前
虚心黄蜂完成签到,获得积分10
1秒前
1秒前
aspirin11发布了新的文献求助30
2秒前
星球日记发布了新的文献求助10
2秒前
科研通AI5应助linst5E采纳,获得10
2秒前
2秒前
Ren完成签到,获得积分10
3秒前
随遇而安完成签到 ,获得积分10
5秒前
5秒前
hdd完成签到,获得积分10
5秒前
杨冰发布了新的文献求助10
6秒前
6秒前
一一发布了新的文献求助10
8秒前
lixueping完成签到,获得积分10
9秒前
共享精神应助怪蜀黍采纳,获得10
10秒前
蔡俊辉发布了新的文献求助10
10秒前
12秒前
12秒前
lovelife完成签到,获得积分10
12秒前
英俊的铭应助祖文轩采纳,获得10
13秒前
善学以致用应助1b采纳,获得10
13秒前
浦肯野应助David采纳,获得40
13秒前
14秒前
14秒前
即将高产sci完成签到,获得积分10
14秒前
蔡俊辉完成签到,获得积分10
15秒前
15秒前
麻瓜完成签到,获得积分20
16秒前
略略略完成签到,获得积分10
16秒前
xiao完成签到,获得积分20
17秒前
17秒前
yangerbao发布了新的文献求助10
17秒前
18秒前
dd33完成签到,获得积分10
19秒前
汪洋浮萍一道开完成签到,获得积分10
20秒前
20秒前
hsy发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543565
求助须知:如何正确求助?哪些是违规求助? 3120838
关于积分的说明 9344680
捐赠科研通 2818938
什么是DOI,文献DOI怎么找? 1549855
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126