Discriminative Multi-View Dynamic Image Fusion for Cross-View 3-D Action Recognition

判别式 联营 计算机科学 人工智能 模式识别(心理学) 特征(语言学) 编码 代表(政治) 观点 动作识别 杠杆(统计) 特征向量 班级(哲学) 哲学 艺术 基因 视觉艺术 政治 化学 法学 生物化学 语言学 政治学
作者
Yancheng Wang,Yang Xiao,Junyi Lu,Bo Tan,Zhiguo Cao,Zhenjun Zhang,Joey Tianyi Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (10): 5332-5345 被引量:17
标识
DOI:10.1109/tnnls.2021.3070179
摘要

Dramatic imaging viewpoint variation is the critical challenge toward action recognition for depth video. To address this, one feasible way is to enhance view-tolerance of visual feature, while still maintaining strong discriminative capacity. Multi-view dynamic image (MVDI) is the most recently proposed 3-D action representation manner that is able to compactly encode human motion information and 3-D visual clue well. However, it is still view-sensitive. To leverage its performance, a discriminative MVDI fusion method is proposed by us via multi-instance learning (MIL). Specifically, the dynamic images (DIs) from different observation viewpoints are regarded as the instances for 3-D action characterization. After being encoded using Fisher vector (FV), they are then aggregated by sum-pooling to yield the representative 3-D action signature. Our insight is that viewpoint aggregation helps to enhance view-tolerance. And, FV can map the raw DI feature to the higher dimensional feature space to promote the discriminative power. Meanwhile, a discriminative viewpoint instance discovery method is also proposed to discard the viewpoint instances unfavorable for action characterization. The wide-range experiments on five data sets demonstrate that our proposition can significantly enhance the performance of cross-view 3-D action recognition. And, it is also applicable to cross-view 3-D object recognition. The source code is available at https://github.com/3huo/ActionView.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Xinxxx应助单纯芹菜采纳,获得10
1秒前
2秒前
3秒前
如意秋珊发布了新的文献求助10
4秒前
子车茗应助隐形小兔子采纳,获得20
4秒前
在水一方应助俞辰采纳,获得10
4秒前
4秒前
4秒前
夜神月发布了新的文献求助10
5秒前
8秒前
un发布了新的文献求助10
8秒前
8秒前
8秒前
旷野完成签到,获得积分20
9秒前
Criminology34应助又欠采纳,获得10
11秒前
Criminology34应助又欠采纳,获得10
11秒前
11秒前
杨阳洋发布了新的文献求助10
11秒前
TMUEH_FCL完成签到,获得积分10
12秒前
岸在海的深处完成签到 ,获得积分10
12秒前
斯文听筠发布了新的文献求助10
14秒前
14秒前
单纯玫瑰发布了新的文献求助10
14秒前
王一发布了新的文献求助50
15秒前
uiuu完成签到,获得积分10
15秒前
Iridesent0v0发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
康轲发布了新的文献求助10
18秒前
2116564发布了新的文献求助10
18秒前
star应助等待夏蓉采纳,获得50
18秒前
zz完成签到 ,获得积分10
20秒前
Akim应助调皮芫采纳,获得10
20秒前
21秒前
糖老鸭发布了新的文献求助10
22秒前
22秒前
废废废发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297579
求助须知:如何正确求助?哪些是违规求助? 4446407
关于积分的说明 13839369
捐赠科研通 4331573
什么是DOI,文献DOI怎么找? 2377767
邀请新用户注册赠送积分活动 1373035
关于科研通互助平台的介绍 1338563