Discriminative Multi-View Dynamic Image Fusion for Cross-View 3-D Action Recognition

判别式 联营 计算机科学 人工智能 模式识别(心理学) 特征(语言学) 编码 代表(政治) 观点 动作识别 杠杆(统计) 特征向量 班级(哲学) 艺术 哲学 语言学 生物化学 化学 政治 政治学 法学 视觉艺术 基因
作者
Yancheng Wang,Yang Xiao,Junyi Lu,Bo Tan,Zhiguo Cao,Zhenjun Zhang,Joey Tianyi Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (10): 5332-5345 被引量:17
标识
DOI:10.1109/tnnls.2021.3070179
摘要

Dramatic imaging viewpoint variation is the critical challenge toward action recognition for depth video. To address this, one feasible way is to enhance view-tolerance of visual feature, while still maintaining strong discriminative capacity. Multi-view dynamic image (MVDI) is the most recently proposed 3-D action representation manner that is able to compactly encode human motion information and 3-D visual clue well. However, it is still view-sensitive. To leverage its performance, a discriminative MVDI fusion method is proposed by us via multi-instance learning (MIL). Specifically, the dynamic images (DIs) from different observation viewpoints are regarded as the instances for 3-D action characterization. After being encoded using Fisher vector (FV), they are then aggregated by sum-pooling to yield the representative 3-D action signature. Our insight is that viewpoint aggregation helps to enhance view-tolerance. And, FV can map the raw DI feature to the higher dimensional feature space to promote the discriminative power. Meanwhile, a discriminative viewpoint instance discovery method is also proposed to discard the viewpoint instances unfavorable for action characterization. The wide-range experiments on five data sets demonstrate that our proposition can significantly enhance the performance of cross-view 3-D action recognition. And, it is also applicable to cross-view 3-D object recognition. The source code is available at https://github.com/3huo/ActionView.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
hometown发布了新的文献求助10
刚刚
Dado发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
wzyshzu发布了新的文献求助10
刚刚
刚刚
燕天与发布了新的文献求助10
1秒前
1秒前
苹果音响完成签到,获得积分20
2秒前
小C完成签到,获得积分10
2秒前
准了完成签到 ,获得积分10
2秒前
火星完成签到 ,获得积分10
3秒前
3秒前
JW发布了新的文献求助10
3秒前
3秒前
Felicity完成签到,获得积分20
3秒前
枫树狐狸发布了新的文献求助10
3秒前
liangzhao发布了新的文献求助30
3秒前
Jelinna完成签到,获得积分10
4秒前
4秒前
顺心的大侠完成签到,获得积分10
4秒前
Ava应助hhwoyebudong采纳,获得10
4秒前
斯文败类应助健忘的妙松采纳,获得30
5秒前
郭生发布了新的文献求助10
6秒前
keyanlv发布了新的文献求助10
6秒前
lilili发布了新的文献求助10
6秒前
NexusExplorer应助wrrop采纳,获得10
6秒前
Zx_1993应助Innocent_Story采纳,获得10
6秒前
哎哟发布了新的文献求助10
6秒前
weiliu发布了新的文献求助10
7秒前
ZWY完成签到,获得积分10
7秒前
wanci应助猪猪hero采纳,获得10
7秒前
27小天使应助林子采纳,获得30
7秒前
宓天问完成签到,获得积分10
7秒前
8秒前
顺心稚晴完成签到 ,获得积分10
8秒前
David发布了新的文献求助10
8秒前
zzz完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710